

STX

PANNEAUX RAYONNANTS

NOTICE TECHNIQUE

Du fait de l'amélioration constante de nos produits, nous nous réservons le droit de modifications sans préavis.

TABLE DES MATIERES

1. CARACTERISTIQUES TECHNIQUES

- 1.1. Les avantages des panneaux EUTERM
- 1.2. Composants des panneaux EUTERM
- 1.3. Spécifications techniques et modèles
- 1.4. Puissances thermiques et pertes de charges

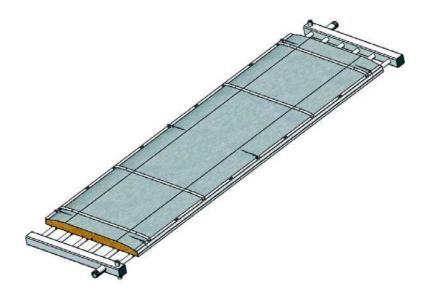
2. DIMENSIONNEMENT ET IMPLANTATION

- 2.1. Détermination de la puissance à installer
- 2.2. Détermination de la température d'alimentation et de l'abaissement de température des panneaux
- 2.3. Choix du type de circuit
- 2.4. Détermination de la longueur du panneau
- 2.5. Choix du modèle de panneau et détermination du nombre de rangées
- 2.6. Vérification des intervalles entre chaque panneau
- 2.7. Calcul de la perte de température réelle et de la température moyenne
- 2.8. Calcul du débit d'eau et des pertes de charge
- 2.9. Exemple d'installation
 - 2.9.1. Calcul de la puissance à installer
 - 2.9.2. Détermination de la température d'alimentation et de la chute de température du panneau
 - 2.9.3. Choix du type de circuit
 - 2.9.4. Détermination de la longueur des rangées de panneaux
 - 2.9.5. Choix du modèle de panneau rayonnant et détermination du nombre de rangées
 - 2.9.6. Vérification de l'écartement entre les panneaux
 - 2.9.7. Calcul de l'abaissement de température réel et de la température moyenne
 - 2.9.8. Calcul du débit d'eau et des pertes de charge

3. INSTALLATION

- 3.1. Supports de suspension
 - 3.1.1. Largeur des supports
 - 3.1.2. Distance entre les supports
 - 3.1.3. Nombre de points d'ancrage
 - 3.1.4. Longueur des suspensions
- 3.2. Type de circuits et type de collecteurs
- 3.3. Raccordement des collecteurs
- 3.4. Installation des couvres-tubes collecteurs
- 3.5. Suspension des panneaux rayonnants
- 3.6. Connexions entre les panneaux radiants
- 3.7. Installation des couvres joints
- 3.8. Installation de l'isolant standard sur les panneaux standards
- 3.9. Installation de l'isolant standard sur les panneaux avec deflecteurs anti-convection
- 3.10. Installation des protections anti-ballons sur les panneaux standards
- 3.11. Installation des protections anti-ballons sur les panneaux avec deflecteurs anti-convection
- 3.12. Mise en eau et vidange du système.
 - 3.12.1. Instructions pour la mise en eau et la vidange du système.

4. DESCRIPTIF TECHNIQUE



1. CARACTERISTIQUES TECHNIQUES

L'EUTERM est un système de chauffage radiant par panneaux rayonnants à eau chaude, à eau surchauffée ou à vapeur. En été les panneaux EUTERM peuvent être utilisés pour le rafraîchissement en les alimentant avec de l'eau froide. La qualité des panneaux EUTERM est garantie par le choix des matériaux, leur traitement de surface qui assurent une puissance stable dans le temps. La forme spéciale du panneau garantit un contact étroit entre les tubes et la surface rayonnante, limitant considérablement les pertes par convection vers le haut et augmentant ainsi la puissance rayonnée vers le bas. L'EUTERM est simple et silencieux, l'échange de chaleur du fluide vers le panneau et ensuite du panneau vers l'ambiance se fait sans parties mécaniques ou électriques. De plus, EUTERM fonctionne à partir de n'importe quelle énergie ou système de production de chaleur.

L'EUTERM se décline dans de nombreuses longueurs, largeurs et puissances (en fonction du nombre de tubes). Il est ainsi possible de l'adapter à tous les types de bâtiments ou locaux (petits ou grands) que ce soit en industrie, ou en tertiaire (gymnases, surfaces commerciales, locaux publics, écoles..). Ils sont particulièrement appréciés pour la sécurité qu'ils apportent dans les bâtiment dits « à risque » où ils évitent les risques d'explosion, d'incendie ou de brûlures. L'installation est extrêmement simple. La maintenance est inexistante, grâce à la qualité des matériaux et la nature statique de ce système. Des économies importantes sont réalisées sur les dépannages, la maintenance et les pièces détachées. Les économies d'énergie sont importantes par rapport aux systèmes conventionnels grâce au chauffage par rayonnement qui évite une bonne partie des pertes par convection vers le haut.

Figure 1.1Panneau rayonnant EUTERM

1.1. LES AVANTAGES EUTERM

Un meilleur confort avec des températures d'air moins élevées.

Le confort ne dépend pas seulement de la température de l'air (comme il est commun de le croire) mais aussi de la température des surfaces qui nous entourent. Dans un environnement chauffé avec l'EUTERM, on constate une élévation de la température rayonnée ce qui apporte un même niveau de confort avec une température d'air inférieure, car l'air est transparent au rayonnement. Ce dernier apporte la chaleur par transfert direct aux surfaces et aux corps. La puissance installée se trouve ainsi réduite car on ne prend plus en compte la totalité d'un volume à chauffer et on évite ainsi en grande partie les pertes de chaleur convective qui se confine sous la toiture.

BAISSE DU GRADIENT DE TEMPERATURE VERTICAL

Dans les locaux chauffés avec l'EUTERM, on note un très faible gradient de température vertical ce qui évite les stratifications d'air chaud et permet donc de réduire la puissance installée.

En chauffage par air chaud, la stratification thermique est considérable. On constate ainsi des températures très importantes sous les toitures, ce qui augmente substantiellement les déperditions et nuit au confort au niveau du sol.

PAS DE COURANTS D'AIR ET PAS DE BRASSAGE DE POUSSIERES

Les installations de chauffage par air chaud mettent en suspension les particules ainsi que la poussière car la ventilation est indispensable pour assurer la dispersion de la chaleur. Ces particules en suspension sont un élément d'inconfort, elles augmentent les taux de contamination aux personnes, et peuvent perturber certaines fabrications.

Avec l'EUTERM, il n'y a pas de mouvement d'air ce qui permet une utilisation idéale quelles que soient les exigences du local.

SILENCE ABSOLU

L'EUTERM est un appareil statique sur lequel il n'y a aucune pièce en mouvement. Il ne génère donc aucun bruit.

SECURITE

Les panneaux EUTERM ne rajoutent aucuns risques supplémentaires aux bâtiments. Ils ne nécessitent pas de passage pour les évacuations à travers les toitures. Ils n'utilisent pas de gaz, d'électricité, et fonctionnent avec des températures raisonnables. Ils peuvent être utilisés dans la majorité des bâtiments à risques spécifiques (matières inflammables, bâtiments logistiques). Vérifier toutefois la législation préalablement à leur préconisation.

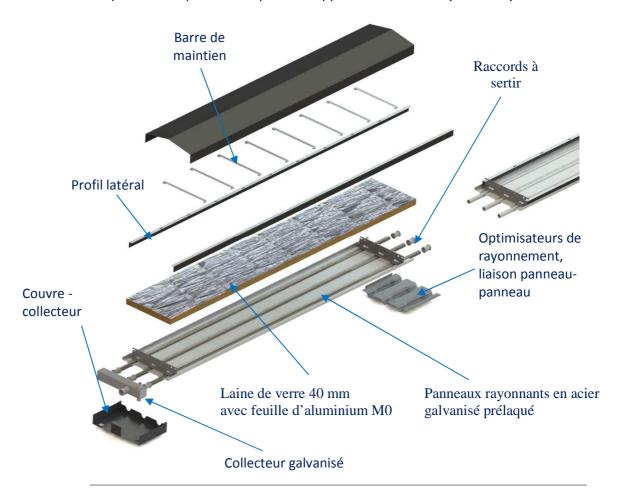
POSSIBILITE DE CHAUFFAGE PAR ZONES

Il est possible de chauffer ou rafraîchir en pratiquant une régulation adaptée à chaque zone définie par l'utilisateur.

ECONOMIES D'ENERGIE ET PROTECTION DE L'ENVIRONEMENT

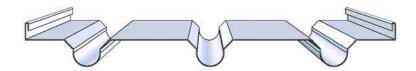
Le système de chauffage par rayonnement génère d'importantes économies d'énergies grâce à sa haute performance par rapport aux systèmes conventionnels:

- Les déperditions sont plus faibles grâce à la faible température de l'air
- La stratification de l'air est moindre
- Il est possible de chauffer par zone, et de réguler plus intelligemment
- Système compatible avec toutes les énergies


De plus, la montée en température est très rapide (faible inertie) et les économies faites sur les changements de pièces détachées, les dépannages et la maintenance sont très importantes au fil des années.

1.2. COMPOSANTS DES PANNEAUX EUTERM

Figure 1.2Vue éclatée d'un panneau EUTERM


Composition du panneau rayonnant apparent EU THERM (standard)

Face émettrice en acier galvanisé prélaqué de 0.6 mm d'une longueur de 2m. 4m, ou 6 mètres et d'une largeur de 300mm, 600mm, 900mm ou 1200 mm. Le profil semi circulaire épousant les tubes de 21.3 mm espacés de 100mm, assure un contact parfait entre les tubes et la face émettrice, ce qui assure un maximum de transfert de chaleur et améliore le rendement de rayonnement de l'appareil.

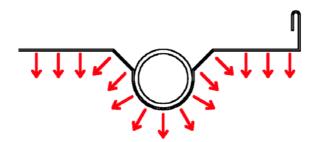

Ce relief diminue par ailleurs les d'échanges d'air à la surface du panneau et évite ainsi les pertes convectives vers le haut. Le profil du panneau (Figure 1.4) permet de rayonner vers le bas avec un angle ouvert (jusqu'à 45°), améliorant ainsi la distribution du rayonnement infrarouge vers le bas.

Figure 1.3Surface rayonnante

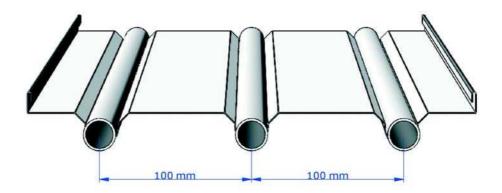
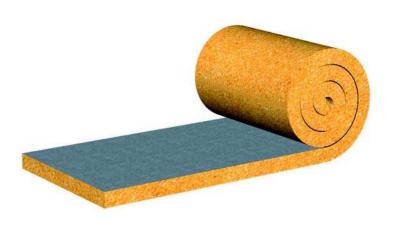


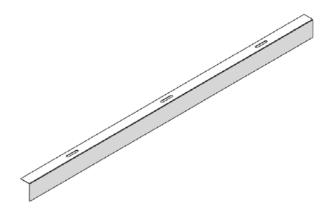
Figure 1.4Détail de la surface rayonnante

Les tubes en acier galvanisé electro-soudés de 21,3 mm sont soumis à des tests électroniques de soudure et de pression. Les extrémités sont ébavurées, prêtes à être connectées. Les panneaux équipés de tubes standards supportent les pressions jusqu'à 6 bars et une température de fluide maximale de 120°C.

Figure 1.5Surface radiante et tubes


Les panneaux rayonnants, après dégraissage sont peints sur les deux faces avec une peinture poudre époxy-polyester et polymérisés dans un four à 180°C. La peinture est conforme à la norme 76/769/EEC. La couleur standard est le blanc (RAL 9010). Autres couleurs en option.

Isolant en fibre de verre, épaisseur standard 40 mm. Autres épaisseurs en option.


Figure 1.6 Isolant

Epaisseur	30 mm	40 mm	50 mm
Conductivité à 50°C (DIN 52612)	0,040 W/m.K	0,038 W/mK	0,040 W/mK
Densité	20 kg/m ³	30 kg/m ³	20 kg/m ³
Résistance thermique	0,75 m ² K/W	1,05 m ² K/W	1,25 m ² K/W

Profil latéral en acier galvanisé prélaqué pour le maintien de l'isolant (seulement pour les versions standard avec ou sans la protection anti-ballons).

Figure 1.7

Barre de maintien en acier peint pour fixation de l'isolant.

Figure 1.8

Le collecteur est realisé dans un tube carré 50×50 mm et fileté en 1" (en option 1"1/4) pour l'alimentation de l'appareil. Du côté opposé se trouvent les emplacements pour connecter le collecteur au panneau rayonnant. Il comporte également la prise d'air et la vidange. Le collecteur est fixé par pression ou soudé au panneau au moment de l'installation.

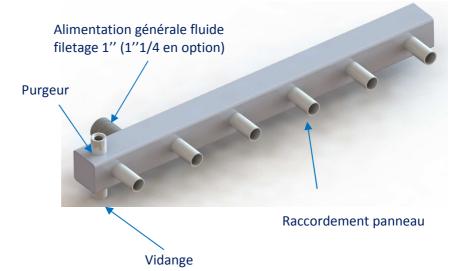
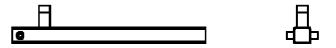



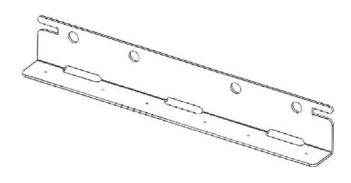
Figure 1.9

Selon le type d'alimentation des panneaux, les collecteurs peuvent être de trois types:

Figure 1.10

■ **Standard**, à alimentation unique, ils sont utilisés sur les installations où l'entrée et la sortie sont situées sur les côtés opposés du panneau.

■ **Double**, avec deux raccordements et un diaphragme interne, utilisé lorsque l'entrée et la sortie du fluide sont situées sur le même panneau.


Fermé, sans raccordement, il assure la boucle retour du fluide sur un panneau.

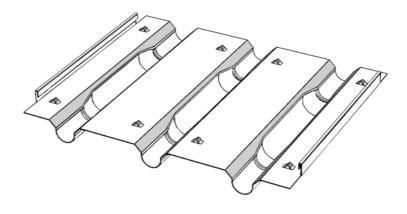

Support cornière en acier galvanisé pour suspension.

Figure 1.11

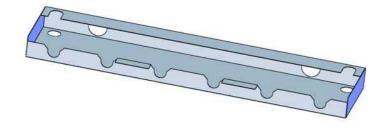

Optimisateur de rayonnement en acier galvanisé prélaqué pour assurer la continuité visuelle entre les panneaux.

Figure 1.12

Couvre collecteur en acier galvanisé prélaqué (en option).

Figure 1.13

Volet latéral anti convection (en option).

Figure 1.14

Bouclier convexe pour gymnases et ambiances très poussiéreuses (en option).

Figure 1.15

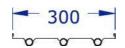
1.3. SPECIFICATIONS TECHNIQUES ET MODELES

La très large gamme de panneaux EUTERM permet de chauffer tous types de locaux quelque soit leur hauteur, leurs déperditions, leur activité ou le type d'énergie utilisée. Les tableaux 1.1 - 1.2 - 1.16 et 1.17 donnent les caractéristiques techniques pour chaque modèle EUTERM disponible.

Table 1.1 Données techniques et modèles EUTERM disponibles

	MODELE	LONGUEUR [mm]	LARGEUR [mm]	NB.DE TUBES	POIDS VIDE [kg/m] Epaisseur tube 1,5 mm	CONTENANCE EAU [L/m] Epaisseur tube 1,5 mm
	300/3/2000	2000				
	300/3/4000	4000	300	3	5,7	0,8
I	300/3/6000	6000				
>	600/6/2000	2000				
4	600/6/4000	4000	600	6	10,2	1,6
Σ	600/6/6000	6000				
~	900/9/2000	2000				
Ш	900/9/4000	4000	900	9	14,7	2,4
ᆫ	900/9/6000	6000				
Е	1200/12/200 0	2000				
	1200/12/400 0	4000	1200	12	18,0	3,2
	1200/12/600 0	6000				
	Pres fonc	sion maximur tionnement:6	n de bbars		T° maximum de fonctionnement 120°C	
	300/2/2000	2000				
_	300/2/4000	4000	300	2	4,9	0,5
5	300/2/6000	6000				
4	600/4/2000	2000				
7	600/4/4000	4000	600	4	8,7	1,1
Σ	600/4/6000	6000				
ш	900/6/2000	2000				
F	900/6/4000	4000	900	6	12,5	1,6
	900/6/6000	6000				
Ш	1200/8/2000	2000				
	1200/8/4000	4000	1200	8	17,0	2,1
	1200/8/6000	6000				

MODELES AVL: BASSE INTENSITE MODELES AVH: HAUTE INTENSITE


Table 1.2 Données techniques et modèles de collecteurs disponibles

	Longueur [mm]	Nombre de tubes	Nombre Entrées/sorties	Connexions pour vidange/ prise d'air	Diaphragme	Poids Vide [kg]	Contenance Eau [L]
Standard ST. H 300/3	300	3	1	2	-	1,3	0,7
Standard ST. H 600/6	600	6	1	2	-	2,2	1,3
Standard ST. H 900/9	900	9	1	2	-	3,2	1,9
Standard ST. H 1200/12	1200	12	1	2	-	4,1	2,6
Standard ST. L 300/2	300	2	1	2	-	1,3	0,7
Standard ST. L 600/4	600	4	1	2	-	2,1	1,3
Standard ST. L 900/6	900	6	1	2	-	3,1	1,9
Standard ST. L 1200/8	1200	8	1	2	-	4,0	2,6
Double avec Diaphragme DI. H 300/3	300	3	2	4	Oui	1,6	0,8
Double avec Diaphragme DI. H 600/6	600	6	2	4	Oui	2,5	1,4
Double avec Diaphragme DI. H 900/9	900	9	2	4	Oui	3,5	2,0
Double avec Diaphragme DI. H 1200/12	1200	12	2	4	Oui	4,4	2,6
Double avec Diaphragme DI. L 300/2	300	2	2	4	Oui	1,6	0,8
Double avec Diaphragme DI. L 600/4	600	4	2	4	Oui	2,5	1,4
Double avec Diaphragme DI. L 900/6	900	6	2	4	Oui	3,4	2,0
Double avec Diaphragme DI. L 1200/8	1200	8	2	4	Oui	4,3	2,6
Fermé CI. H 300/3	300	3	-	2	-	1,1	0,6
Fermé CI. H 600/6	600	6	-	2	-	2,0	1,3
Fermé CI. H 900/9	900	9	-	2	-	2,9	1,9
Fermé CI. H 1200/12	1200	12	-	2	-	3,9	2,5
Fermé CI. L 300/2	300	2	-	2	-	1,1	0,6
Fermé CI. L 600/4	600	4	-	2	-	1,9	1,3
Fermé CI. L 900/6	900	6	-	2	-	2,9	1,9
Fermé	1200	8	-	2	-	3,8	2,5

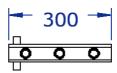
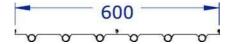
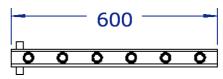
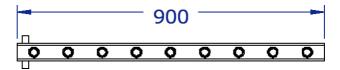


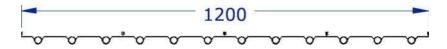
Figure 1.16EUTERM AVH
(Haute intensité)
Collecteur correspondant


EUTERM AVH 300/3/2000, AVH 300/3/4000, AVH 300/3/6000

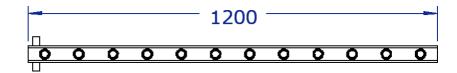

COLLECTEUR ST. H 300/3

EUTERM AVH 600/6/2000, AVH 600/6/4000, AVH 600/6/6000


COLLECTEUR ST. H 600/6, DI. H 600/6, CI. H 600/6


EUTERM AVH 900/9/2000, AVH 900/9/4000, AVH 900/9/6000

COLLECTEUR ST. H 900/9, DI. H 900/9, CI. H 900/9



EUTERM AVH 1200/12/2000, AVH 1200/12/4000, AVH 1200/12/6000

COLLECTEUR ST. H 1200/12, DI. H 1200/12, CI. H 1200/12

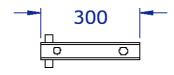
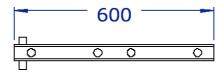
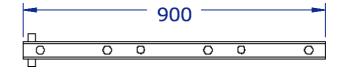


Figure 1.17EUTERM AVL
(Basse intensité)
Collecteur correspondant

EUTERM AVL 300/2/2000, AVL 300/2/4000, AVL 300/2/6000


COLLECTEUR ST. L 300/2

EUTERM AVL 600/4/2000, AVL 600/4/4000, AVL 600/4/6000


COLLECTEUR ST. L 600/4, DI. L 600/4, CI. L 600/4

EUTERM AVL 900/6/2000, AVL 900/6/4000, AVL 900/6/6000

COLLECTEUR ST. L 900/6, DI. L 900/6, CI. L 900/6

EUTERM AVL 1200/8/2000, AVL 1200/8/4000, AVL 1200/8/6000

1.4. PUISSANCE THERMIQUE ET PERTES DE CHARGE

Les courbes 1.18 and 1.20 donnent les puissances rayonnées par ml de panneau EUTERM, alimentés en eau chaude ou surchauffée. Les courbes 1.22 and 1.23 donnent la puissance rayonnée en froid des mêmes panneaux mais avec les collecteurs. Ces données sont calculées pour une installation horizontale à 5 mètre de haut (panneaux isolés) dans des entrepôts de structure classique avec ventilation naturelle.

Les symboles suivants sont utilisés:

T_M = Température moyenne du fluide (température moyenne entre l'entrée et la sortie) [°C]

T_o = Température du local, mesurée au moyen d'un thermomètre à boule noire [°C]

$$\Delta T = T_{M} - T_{O}$$
 [°C]

Les puissances thermiques nettes des panneaux rayonnants EUTERM ont été mesurées et cerfifiées par un laboratoire accrédité pour réaliser les essais en conformité avec la norme Européenne EN14037.

La formule pour calculer la puissance est la suivante:

$$\Phi = K * \Delta T^n$$

 Φ = Puissance thermique

K = coefficient d'émissivité du corps de chauffe

n = Exposant du corps de chauffe

 ΔT = différence entre la température moyenne du fluide thermique et la température de l'air.

Les valeurs indiquées dans les tables ci-dessous donnent les puissances thermiques en fonction de différentes températures ambiantes, la différence de température (ΔT) étant définie comme la différence entre la température moyenne du fluide thermique et la température de l'air.

Valeurs obtenues par le laboratoire avec un $\Delta T = 55K$

Modèle	Puissance (W/m)	Coefficient K	Coefficient n
AVH 300	201	1,7846	1,1835
AVH 600	373	3,1016	1,1951
AVH 900	519	4,392	1,191
AVH 1200	665	5,7245	1,1867

Collecteurs:

Modèle	Puissance (W)	Coefficient K	Coefficient n
AVH 300	32	6,0994	0,4135
AVH 600	58	11,2602	0,4103
AVH 900	89	17,1289	0,4121
AVH 1200	119	22,7281	0,4140

Table 1.3 puissance thermique [W/m] pour EUTERM type AVH

Δτ	Modèle AVH 300	Modèle AVH 600	Modèle AVH 900	Modèle AVH 1200
[K]	[W/m]	[W/m]	[W/m]	[W/m]
30	98	181	252	324
32	106	195	272	350
34	114	210	293	376
36	121	225	313	402
38	130	240	334	429
40	138	255	355	456
42	146	270	377	483
44 46	154 162	286 301	398 420	511 538
48	171	317	442	566
50	179	333	464	594
52	188	349	486	622
54	196	365	508	651
55	201	373	519	665
56	205	381	531	680
58	214	397	553	709
60	222	414	576	738
62	231	430	599	767
64	240	447	622	796
66	249	464	645	826
68	258	480	669	856
70	267	497	692	886
72	276	514	716	916
74	285	532	739	946
76	294	549	763	977
78	303	566	787	1007
80	313	583	811	1038
82 84	322	601	836 860	1069
86	331 341	618 636	884	1100 1131
88	350	654	909	1162
90	359	672	934	1194
92	369	689	958	1225
94	378	707	983	1257
96	388	725	1008	1289
98	397	744	1033	1320
100	407	762	1058	1353
102	417	780	1084	1385
104	426	798	1109	1417
106	436	817	1134	1449
108	446	835	1160	1482
110	456	854	1186	1514
112	466	872	1211	1547
114	475	891	1237	1580
116	485 40F	910	1263	1613
118 120	<u>495</u> 505	928 947	1289 1315	1646 1679
120	505 515	947 966	1315	1712
124	525	985	1368	1712
126	535	1004	1394	1779
128	545	1023	1420	1813
130	555	1042	1447	1847
132	565	1061	1473	1880
134	576	1081	1500	1914
136	586	1100	1527	1948
138	596	1119	1553	1982
140	606	1139	1580	2016
142	616	1158	1607	2050
144	627	1178	1634	2085
146	637	1197	1661	2119
148	647	1217	1688	2154
150	658	1237	1715	2188

selon EN 14037 -1,-2,-3

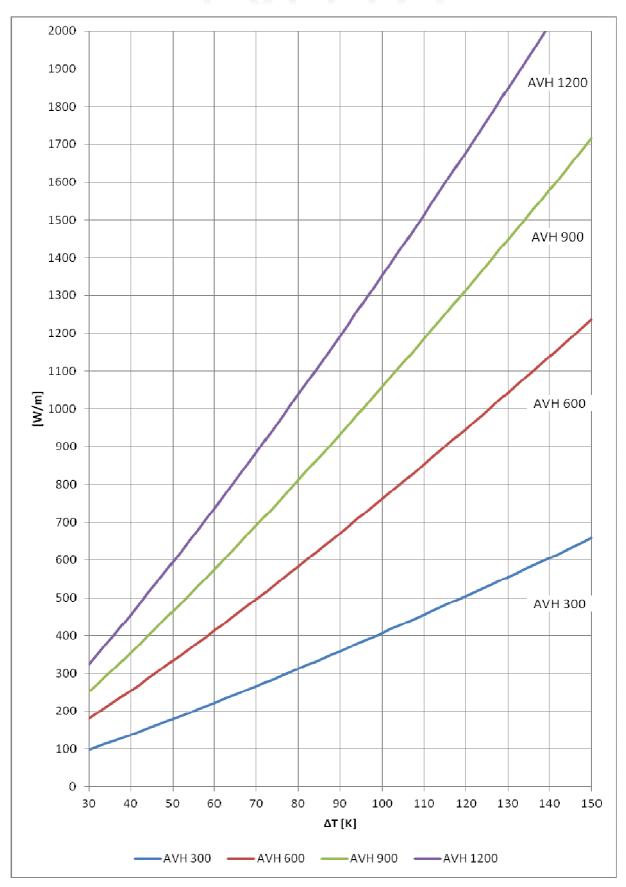
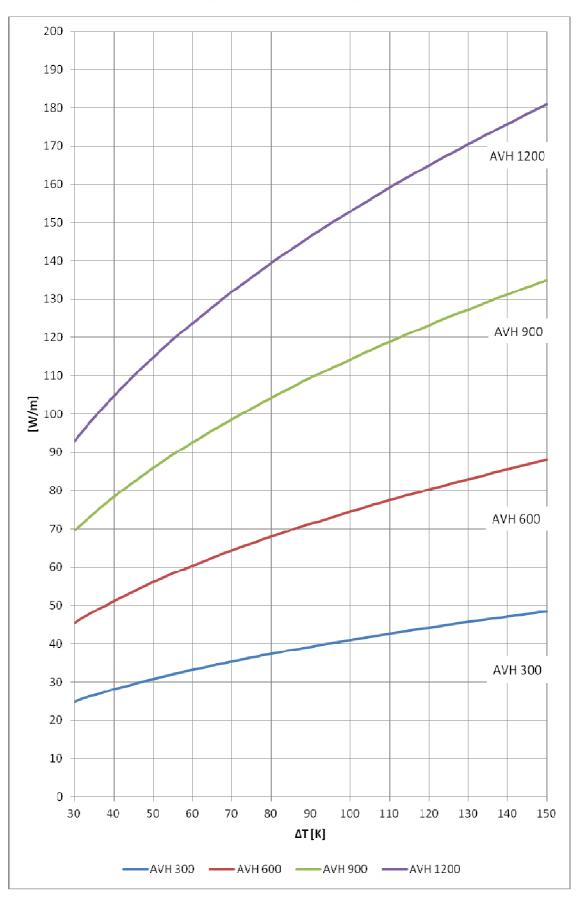


Figure 1.18
Puissance thermique
EUTERM AVH
selon
EN 14037-1,-2,-3

Table 1.4 puissance thermique [W] pour collecteurs EUTERM AVH

Δт	Collecteur pour AVH 300	Collecteur pour AVH 600	Collecteur pour AVH 900	Collecteur pour AVH 1200
[K]	[w]	[w]	[w]	[w]
30	25	45	70	93
32	26	47	71	95
34	26	48	73	98
36	27	49	75	100
38	27	50	77	102
40 42	28 29	51 52	78 80	105 107
44	29 29	53	80 81	107
46	30	55 54	83	111
48	30	55	84	113
50	31	56	86	115
52	31	57	87	117
54	32	58	89	119
55	32	58	89	119
56	32	59	90	120
58	33	60	91	122
60	33	60	93	124
62	34	61	94	125
64	34	62	95	127
66	34	63	96	129
68	35	64	97	130 132
70 72	<u>35</u> 36	64 65	99 100	134
74	36	66	101	135
76	37	67	102	137
78	37	67	103	138
80	37	68	104	139
82	38	69	105	141
84	38	69	106	142
86	38	70	107	144
88	39	71	108	145
90	39	71	109	146
92	40	72	110	148
94 96	40 40	73 73	111 112	149 150
98	41		113	152
100	41	74	114	153
102	41	75	115	154
104	42	76	116	155
106	42	76	117	157
108	42	77	118	158
110	43	77	119	159
112	43	78	120	160
114	43	79	121	161
116	44	79	121	163
118	44 44	80	122	164
120 122	<u>44</u> 44	80 81	123 124	165 166
124	45	81	125	167
126	45	82	126	168
128	45	82	127	169
130	46	83	127	171
132	46	83	128	172
134	46	84	129	173
136	47	85	130	174
138	47	85	130	175
140	47	86	131	176
142	47	86	132	177
144	48	87	133	178
146	48	87	134	179
148 150	48 48	87 88	134 135	180 181
150	40	00	133	101

Selon EN 14037 -1,-2,-3



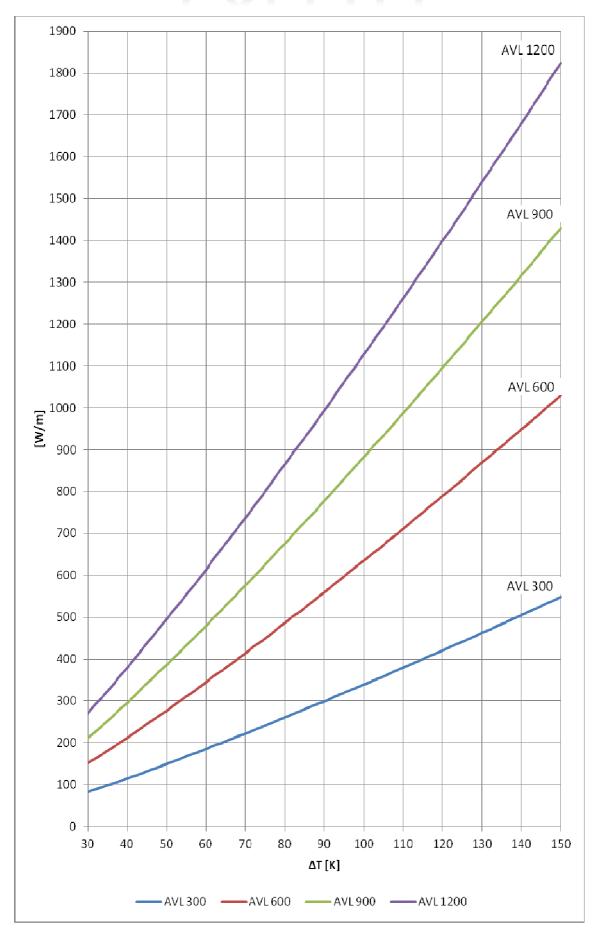

Figure 1.19
Puissance thermique
Collecteurs EUTERM AVH
Selon EN 14037-1,-2,-3

Table 1.5 Puissances thermiques [W/m] pour EUTERM AVL

Δτ	Modèle AVL 300	Modèle AVL 600	Modèle AVL 900	Modèle AVL 1200
[K]	[W/m]	[W/m]	[W/m]	[W/m]
30	82	151	210	270
32	88	163	227	292
34	95	175	244	313
36	101	187	261	335
38	108	200	279	358
40	115	212	296	380
42 44	122 128	225 238	314 332	403 425
46	135	251	350	448
48	142	264	368	472
50	149	277	386	495
52	156	291	405	519
54	164	304	423	542
55	167	311	433	554
56	171	317	442	566
58	178	331	461	590
60	185	345	480	615
62	193	359	499	639
64	200	372	518	664
66	207	386	538	688
68	215	400	557	713
70	222	414	577	738
72	230	429	596	763
<u>74</u> 76	238 245	443 457	616 636	788 814
78	253	472	656	839
80	261	486	676	865
82	268	501	696	891
84	276	515	717	916
86	284	530	737	942
88	292	545	757	968
90	299	560	778	995
92	307	575	799	1021
94	315	590	819	1047
96	323	605	840	1074
98	331	620	861	1100
100	339	635	882	1127
102	347	650	903	1154
104	355 363	665	924	1181
106 108	372	681 696	945 967	1208 1235
110	380	711	988	1262
112	388	727	1009	1289
114	396	742	1031	1317
116	404	758	1053	1344
118	413	774	1074	1372
120	421	789	1096	1399
122	429	805	1118	1427
124	438	821	1140	1455
126	446	837	1162	1483
128	454	853	1183	1511
130	463	869	1206	1539
132	471	885	1228	1567
134	480	901	1250	1595
136	488	917	1272	1623
138	497	933	1294	1652
140	505	949	1317	1680
142 144	514 522	965 981	1339 1362	1709 1737
144	531	998	1384	1766
148	540	1014	1407	1795
150	548	1031	1430	1824
150	3 10	1001	1130	102 1

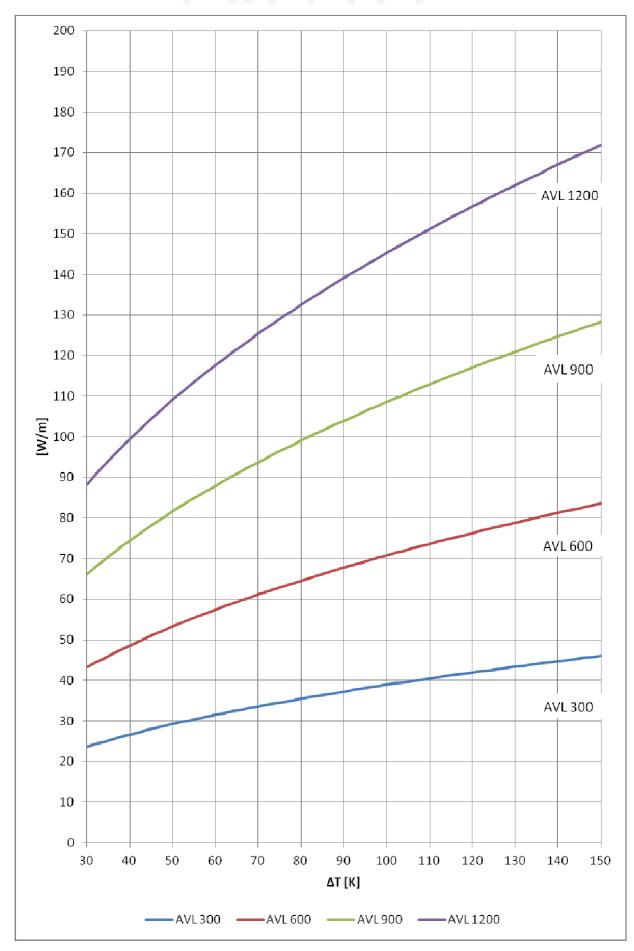

Figure 1.20Puisssance thermique
EUTERM AVL

Table 1.6 puissance thermique [W] pour collecteurs EUTERM AVL

Δτ	Collecteur pour AVL 300	Collecteur pour AVL 600	Collecteur pour AVL 900	Collecteur pour AVL 1200
[K]	[w]	[W]	[W]	[W]
30	24	43	66	88
32	24	44	68	91
34	25	45	70	93
36	26	47	71	95
38	26	48	73	97
40	27	49	74	99
42	27	50	76	101
44	28	51	77	103
46	28	51	79	105
48	29	52	80	107
<u>50</u> 52	29 30	53 54	82 83	109 111
54 55	30 30	<u>55</u> 55	84 85	113 113
56	31	56	85 85	114
58	31	57	87	116
60	31	57	88	118
62	32	58	89	119
64	32	59	90	121
66	33	60	91	122
68	33	60	93	124
70	34	61	94	125
72	34	62	95	127
74	34	63	96	128
76	35	63	97	130
78	35	64	98	131
80	35	65	99	132
82	36	65	100	134
84	36	66	101	135
86	37	67	102	137
<u>88</u> 90	37 37	67 68	103 104	138 139
90	38	68	105	140
94	38	69	106	140
96	38	70	107	143
98	39	70	108	144
100	39	71	109	145
102	39	71	109	147
104	40	72	110	148
106	40	72	111	149
108	40	73	112	150
110	40	74	113	151
112	41	74	114	152
114	41	75	115	153
116	41	75	115	155
118	42	76	116	156
120	42	76	117	157
122	42	77	118	158
124	43	77	119	159
126	43	78	119	160
128 130	43 43	78 79	120 121	161 162
130	43		121	163
134	44	80	122	164
136	44	80	123	165
138	44	81	124	166
140	45	81	125	167
142	45	82	125	168
144	45	82	126	169
146	45	83	127	170
148	46	83	128	171
150	46	84	128	172

Figure 1.21Puissances thermiques collecteurs
EUTERM AVL

1.5 PANNEAUX RAYONNANTS RAFRAICHISSANTS

Afin d'améliorer le confort, il est possible de faire fonctionner les panneaux en rafraîchissement car il a été démontré que le manque de confort lié aux excès de température et d'humidité agit sur la productivité dans des proportions allant de 10 à 20%.

Avec l'aide d'une régulation adéquate, les panneaux rayonnants EUTERM de CARLIEUKLIMA peuvent être utilisés pour produire aussi du froid. Ils s'utilisent donc aussi bien l'hiver que l'été.

Les avantages du rayonnement sont aussi valables en mode "froid". Comparé à un système de climatisation classique, il présente des avantages économiques et de confort.

Avantages de confort:

Conserve une température d'air plus élevée.

On considère que la temperature de confort (T_{op}) est la résultante de la temperature de l'air (T_a) et de la temperature des parois (T_p) .

Par exemple, afin d'obtenir une température de confort de 25°C vous pouvez avoir les conditions suivantes:

$$T_{op} de 25^{\circ}C = \frac{Ta (23^{\circ}C) + Tp (27^{\circ}C)}{2}$$

(avec un système de rafraîchissment traditionnel)

$$T_{op} de 25^{\circ}C = \frac{Ta (27^{\circ}C) + Tp (23^{\circ}C)}{2}$$

(avec un système par rayonnement)

Le rayonnement froid permet d'atteindre la température de confort sans avoir à refroidir directement l'air, donc en réalisant des économies substancielles.

o Vitesse d'air et hygiène

Tout comme en chauffage par rayonnement, la production de froid s'effectue sans mouvement d'air, courants d'air.

Dans les bâtiments où le système de rafraîchissement EUTERM est en place, les mouvements d'air sont dûs uniquement aux renouvellements d'air hygiéniques. L'absence de courant d'air et de poussières rend l'atmosphère plus propres et hygiénique.

Silence

En l'absence de pièces mécaniques en movement, le système est complètement silencieux.

Introduction

Le point très important auquel il faut veiller est d'éviter que la température de surface du panneau soit plus basse que le point de rosé afin d'éviter la condensation.

On doit considérer que dans les bâtiments sans air conditionné , le point de rosé de l'air environnant est le même que celui de l'air extérieur. Dans ce cas, il est conseillé de maintenir la température d'entrée du fluide dans le panneau d'environ 1°C au-dessus de la température de condensation de l'ambiance.

Puissance frigorifique des panneaux rayonnants EUTERM

La puissance frigorifique de nos panneaux a été certifiée par un laboratoire accrédité selon les prescriptions de la norme Européene EN 14240.

Formule utilisée à cet effet:

$$\Phi = K * \Delta T^n$$

 Φ = Puissance frigorifique

K = Coefficient relatif à l'émetteur n = Exposant realtif à l'émetteur

 ΔT = différence entre la température moyenne du fluide thermique et la température de confort.

Les valeurs donnent les puissances frigorifiques selon differentes conditions de ΔT (différences entre la température moyenne du fluide thermique et la température de l'air).

Valeurs obtenues par le laboratoire avec $\Delta T = 8K$

	Modèle	Puisssance	Coefficient	Exposant
		(W/m²)	K	n
j	AVH 300	27	2,7414	1,0967

Table 1.7 Puissance frigorifique [W] pour EUTERM AVH avec collecteurs

	Modèle AVH 300	Modèle AVH 600	Modèle AVH 900	Modèle AVH 1200
Δτ				
[K]	[W]	[W]	[W]	[w]
1	3	6	8	10
2	6	11	16	20
3	9	17	23	30
4	13	24	34	43
5	16	30	41	53
6	20	37	52	66
7	23	43	60	76
8	27	50	70	89
9	31	57	80	102
10	34	63	88	112
11	38	70	98	125
12	42	78	109	139
13	46	85	119	152
14	50	93	130	165
15	53	98	137	175

s Selon EN 14240

Table 1.8 Puissance frigorifique [W] pour EUTERM AVL avec collecteurs

	Modèles AVL 300	Modèles AVL 600	Modèles AVL 900	Modèles AVL 1200
Δτ				
[K]	[W]	[w]	[W]	[w]
1	2	4	5	7
2	5	9	13	17
3	8	15	21	26
4	10	19	26	33
5	13	24	34	43
6	16	30	41	53
7	19	35	49	63
8	22	41	57	73
9	25	46	65	83
10	29	54	75	96
11	32	59	83	106
12	35	65	91	116
13	38	70	98	125
14	41	76	106	135
15	45	83	117	149

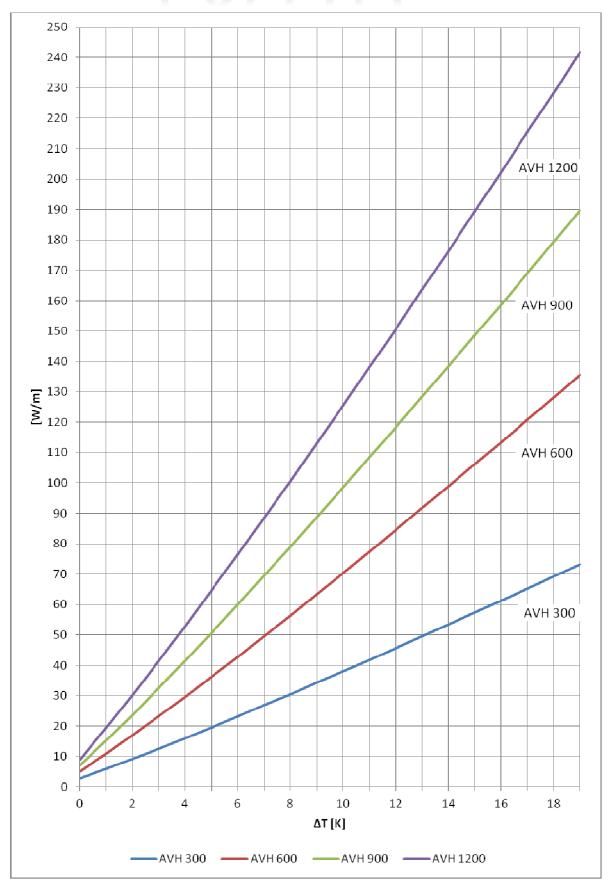


Figure 1.22
Puissance froid
EUTERM AVH selon
EN 14240

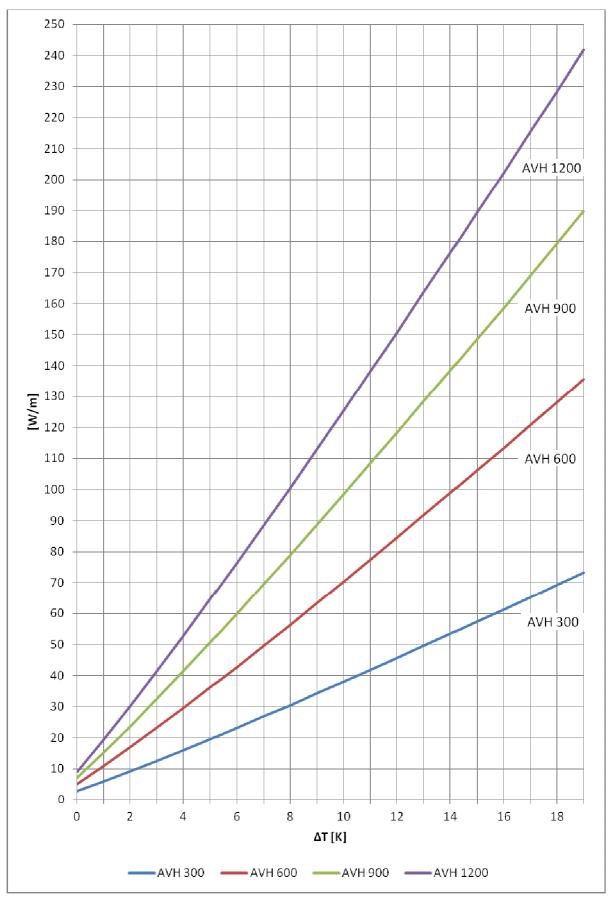


Figure 1.23
Puissance froid EUTERM AVL

1.6 PERTES DE CHARGE ET TEMPERATURES DE SURFACE

Les graphes de perte de charges des panneaux EUTERM sont basés sur une temperature moyenne de fluide TM de 80°C; Pour les autres températures le coefficient correctif ß appliqué aux pertes en charges totales obtenues à partir des tableaux 1.24, 1.25, 1.26, 1.27, 1.28. La figure 1.29 donne la temperature moyenne de surface du panneau en fonctiond de la variation de temperature moyenne du fluide.

Table 1.9 Coefficients correctifs des pertes de charge en fonction de la température moyenne du fluide

T _M [°C]	60	80	100	120	140	160
Coefficient ß	1.08	1.00	0.95	0.90	0.86	0.82

Il est conseillé d'utiliser des valeurs de débit d'eau comprises entre 200 and 400 I/h pour chaque tube (D = 21.3 mm) d'un panneau EUTERM. La table 1.9 indique les débits minimum. Il est absolument impératif de ne pas descendre en dessous afin d'assurer un coefficient d'échange thermique suffisant.

Table 1.10 Débit d'eau minimum en fonction du type de collecteur et de la température de retour [l/h]

_	Température de retour [°C]	L 300/2	L 600/4	L 900/6	L 1200/8	H 300/3	H 600/6	H 900/9	H 1200/12
_		imum [l,	Débit minimum [I/h]						
	30	241	482	724	965	362	724	1085	1447
^	40	197	395	592	789	296	592	888	1184
STANDARD	50	165	329	494	659	247	494	741	988
2	60	140	279	419	558	209	419	628	838
¥.	70	120	240	360	480	180	360	540	720
	80	104	209	313	417	156	313	469	626
Ë	90	92	183	275	366	137	275	412	549
COLLECTEUR	100	81	162	243	324	122	243	365	486
Ĭ.	110	72	144	217	289	108	217	325	433
Ö	120	65	130	194	259	97	194	292	389
0	130	58	117	175	234	88	175	263	351
-	140	53	106	159	212	80	159	239	318
-	150	48	97	145	193	72	145	217	290
-									
-	30	121	241	362	482	241	362	603	724
-	40	99	197	296	395	197	296	493	592
ш.	50	82	165	247	329	165	247	412	494
	60	70	140	209	279	140	209	349	419
DOUBL	70	60	120	180	240	120	180	300	360
	80	52	104	156	209	104	156	261	313
COLLECTEUR	90	46	92	137	183	92	137	229	275
Ë	100	41	81	122	162	81	122	203	243
Ÿ.	110	36	72	108	144	72	108	181	217
ö	120	32	65	97	130	65	97	162	194
0	130	29	58	88	117	58	88	146	175
-	140	27	53	80	106	53	80	133	159
-	150	24	48	72	97	48	72	121	145
-	130	24	40	12	3/	40	12	121	140

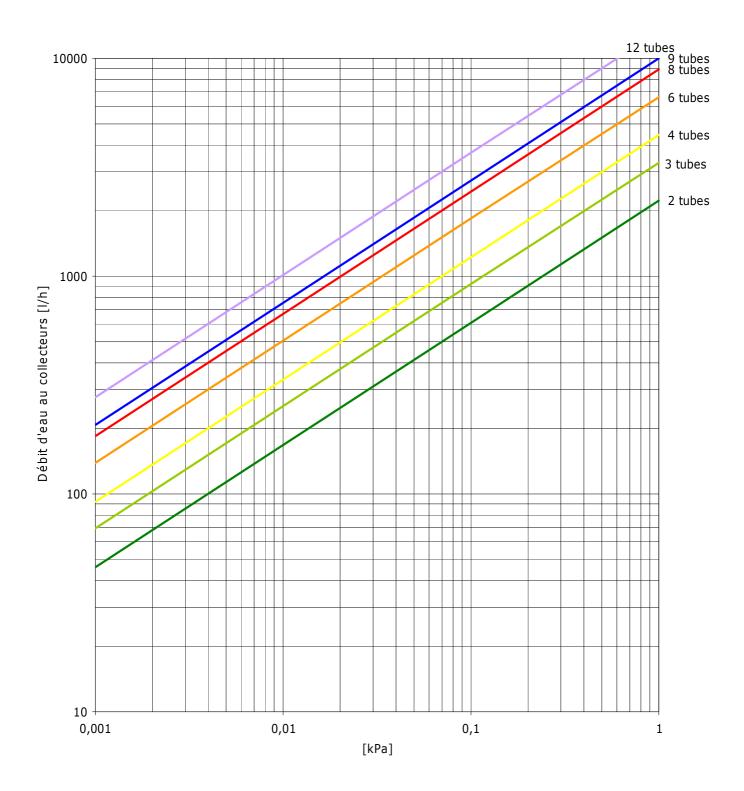


Figure 1.24
Perte de charge par ml de panneau Équipé de tubes et collecteurs standards (temperature moy.80°C)

1 kPa =10 hPa = 10 mbar = 100 mm H₂O

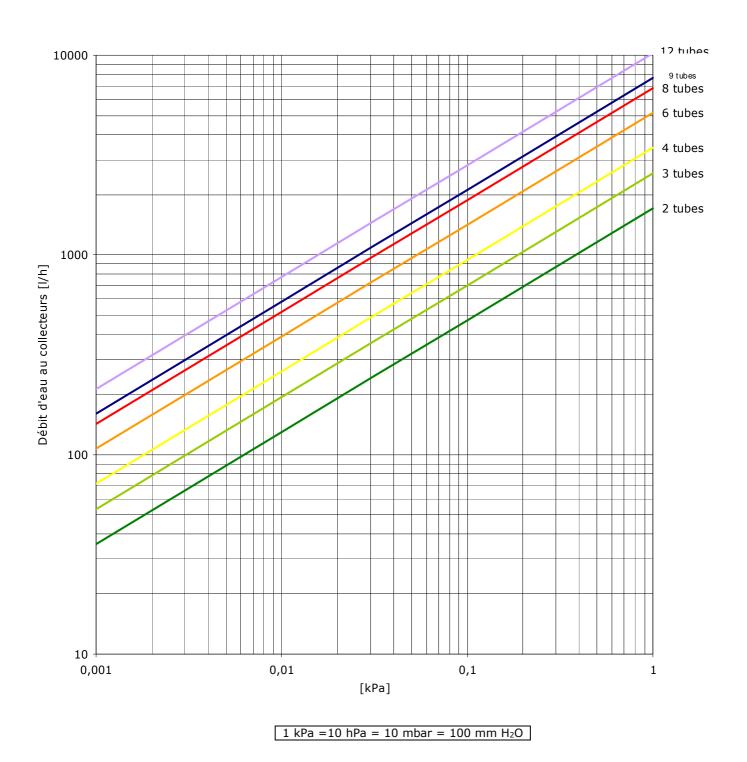


Figure 1.25
Perte de charge par ml
de panneau
Équipé de tubes
spéciaux et collecteurs
(temperature moy.80°C)

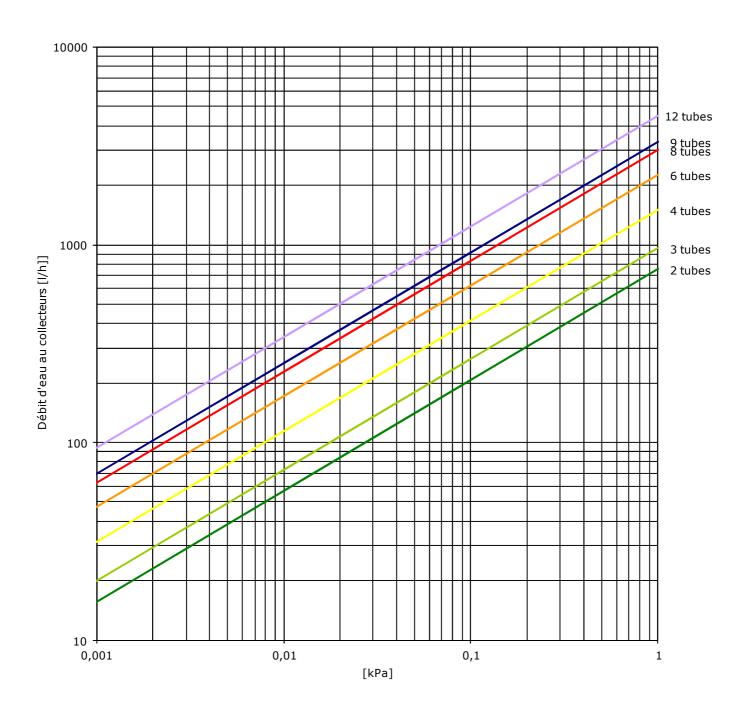


Figure 1.26
Perte de charge
par ml de
panneau
rayonnant
Avec tube standard et
diaphragme.
(temperature
moy.80°C)

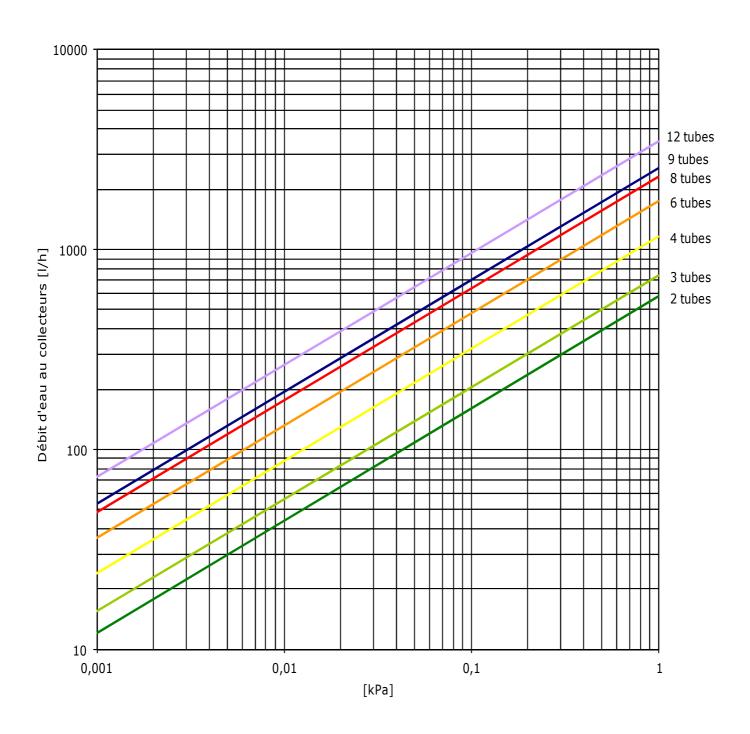
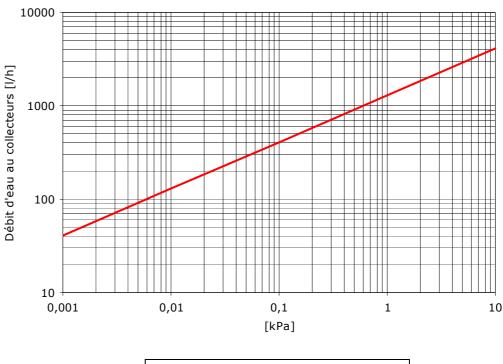



Figure 1.27

Perte de charge par ml de panneau rayonnant Avec tube special et diaphragme. (temperature moy.80°C) 1 kPa =10 hPa = 10 mbar = 100 mm H₂O

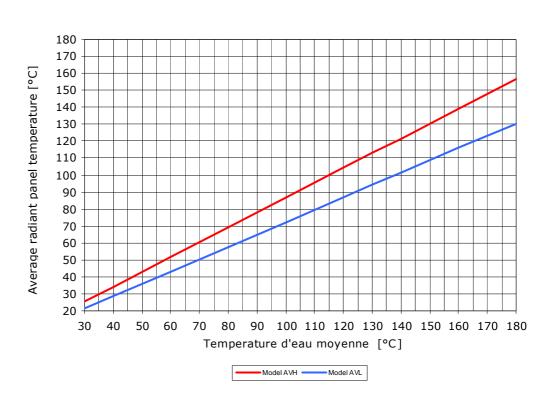


Figure 1.28Perte de charge moyenne
Par paire de collecteurs.
(temperature moy. 80°C)

 $1 \text{ kPa} = 10 \text{ hPa} = 10 \text{ mbar} = 100 \text{ mm } H_2O$

Figure 1.29Température moyenne de surface

2. DIMENSIONNEMENT ET IMPLANTATION

Cette deuxième partie donne des instructions afin de réaliser le dimensionnement d'une installation en panneaux rayonnants EUTERM.

2.1. CALCUL DES DEPERDITIONS

Il convient de calculer les déperditions afin de pouvoir déterminer la puissance correcte à installer pour chauffer le bâtiment.

Pour commencer, il faut choisir la hauteur d'installation des panneaux EUTERM, en se rappelant qu'au-dessus de 5 mètres, la puissance à installer et la consommation d'énergie augmente. Il est donc conseillé d'installer les panneaux rayonnants aussi bas que possible, pour autant que la limite basse imposée par la température du fluide soit respectée, ainsi que les caractéristiques et/ou la configuration du local (échafaudages, ponts roulants, etc..).

2.2. DETERMINATION DE LA TEMPERATURE D'ALIMENTATION ET DE L'ABAISSEMENT DE TEMPERATURE DES PANNEAUX

Par rapport à la température d'alimentation, l'abaissement de température dans les panneaux ΔT_{CP} est la différence entre la température à l'entrée du panneau et celle de sortie. L'abaissement varie de 5°C à 20°C normalement pour l'eau chaude.

$$\Delta T_{\text{CP}} = \quad T_{\text{I}} - T_{\text{UP}}$$
 [° C]
$$\text{où:}$$

$$T_{\text{I}} = \quad \text{temp\'erature d'alimentation}$$
 [°C]

 $T_{UP} =$ température du fluide chaud sortant du système [°C]

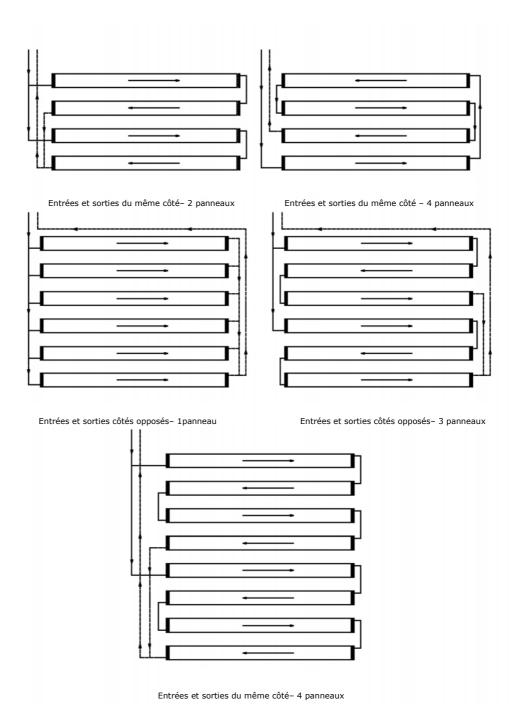
$$T_{UP}$$
 est égale à:
 $T_{UP} = T_I - \Delta T_{CP}$ [°C]

Il est possible de calculer la température moyenne du fluide thermique T_{MP}:

$$T_{MP} = \frac{(T_{I} + T_{UP})}{2}$$
 [°C]

On peut ensuite calculer la différence ΔTP entre la température moyenne du fluide thermique ΔTMP et la température ambiante TO:

$$\Delta T_P = T_{MP} - T_O$$
 [°C]


où:

 T_0 = température résulante opérative

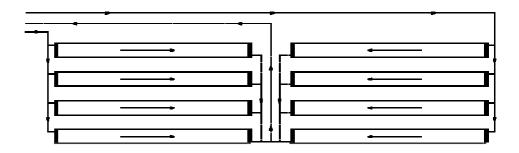
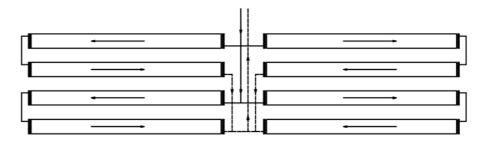
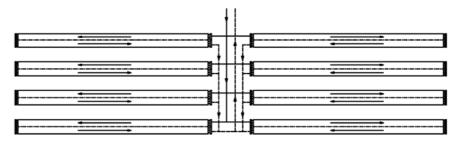

2.3. CHOIX DU CIRCUIT D'ALIMENTATION

Figure 2.1Exemples de circuits d'alimentation compensés




Figure 2.2 Exemples d'alimentation de panneaux

Entrées sorties du côté opposé - 1 panneau

entrées et sorties du même côté- 2 panneaux

Entrées et sorties sur le même panneau

Au moment du choix du type de circuit d'alimentation et de l'implantation des panneaux, il faut veiller à:

- Equilibrer le circuit hydraulique; Cela évitera l'ajout de systèmes coûteux;
- L'espacement longitudinal entre les panneaux et leur alimentations (les tuyauteries coûtant parfois plus cher que les appareils de chauffage);
- Pour cause d'uniformité de température des panneaux il est conseillé d'utiliser les collecteurs à diaphragme uniquement quand cela est nécessaire.

2.4. DETERMINATION DE LA LONGUEUR DES RANGEES

La longueur des rangées de panneaux L [m] doit être calculée en gardant à l'esprit qu'un panneau mesure minimum 2 mètres et qu'il est préférable de ne pas dépasser 40 mètres de longueur afin d'éviter des pertes de charge trop importantes et des températures non homogènes.

2.5. CHOIX DU MODELE DE PANNEAU ET DU NOMBRE DE RANGEES

Pour déterminer le nombre de rangées de panneaux il faut d'abord choisir le modèle de panneau. Il est conseillé dans un premier temps de choisir le modèle avec le plus grand nombre de tubes (modèle AVH) et la plus grande largeur, tout en respectant les limitations imposées par les hauteurs d'installation. La table 2.1 indique la hauteur minimum d'accrochage en fonction du modèle et de la température du fluide.

Tables 2.1 Hauteurs d'installation minimum recommandées (en mètres depuis le sol)

Température d'eau moyenne [°C]

	EUTE	RM AV	/H		EUTERM AVL			
Temperature d'eau	Largeur du panneau [mm]							
moyenne [°C]	300	600	900	1200	300	600	900	1200
т°	Hauteur minimum [m]							
60	2.9	3.0	3.0	3.0	2.8	2.9	2.9	2.9
70	3.1	3.2	3.2	3.3	3.0	3.1	3.1	3.1
80	3.2	3.4	3.5	3.5	3.1	3.2	3.4	3.4
90	3.4	3.6	3.7	3.8	3.3	3.4	3.6	3.6
100	3.6	3.7	4.0	4.0	3.5	3.6	3.8	3.9
110	3.8	3.9	4.2	4.3	3.7	3.8	4.0	4.1
120	3.9	4.1	4.5	4.5	3.8	3.9	4.3	4.4
130	4.1	4.3	4.7	4.8	4.0	4.1	4.5	4.6

A partir des tables 1.4 e 1.5, on obtient la puissance R_T [W/m] selon les modèles de panneaux, en fonction du delta ΔT^o qui est le plus proche de la différence de température ΔT_P calculée précédemment.

De cette valeur, et au moyen de la formule ci-après, il est possible de déterminer le nombre de rangées de panneaux nécessaires pour couvrir les besoins thermiques du bâtiment.

où:

$$N = \frac{\Phi}{1 \cdot RT}$$

 $\begin{array}{lll} N = & \text{nombre de rang\'ees} \\ \Phi = & \text{puissance thermique n\'ecessaire, calcul\'ee au point 2.1} & [W] \\ L = & \text{longueur des rang\'ees} & [m] \\ R_T = & \text{puissance thermique par ml de panneau} & [W/m] \end{array}$

2.6. VERIFICATION DE L'ESPACEMENT ENTRE LES PANNEAUX

Pour assurer une bonne uniformité de chauffage, les panneaux ne doivent pas être trop éloignés les uns des autres.

L'intervalle maximum entre panneaux dépend de la hauteur de l'installation (plan rayonnant) et de la hauteur d'occupation (figure 2.3), selon la formule:

$$I_{MAX} = 1.5 (H-h)$$
 [m]

où:

 I_{MAX} = Entraxe entre deux panneaux adjacents [m] \mathbf{H} = Hauteur d'installation [m] \mathbf{h} = Hauteur d'occupation [m]

Nota – La hauteur d'occupation usuelle est de 1,5 m (attention au cas spécifiques avec mezzanine ou estrade)

Figure 2.3

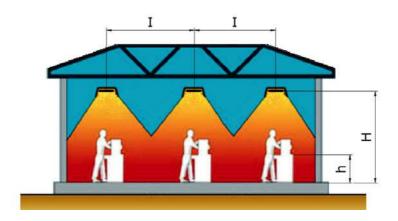


Table 2.2 donne l'intervalle maximum pour une hauteur d'occupation de 1.5 mètres.

Table 2.2. Intervalle maximum entre les panneaux selon la hauteur d'installation

H [m] 3	3.5 4.0	4.5	5.0	5.5	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0
1	15.0												
I* [m] 3	3.0 3.8	4.5	5.3	6.0	6.8	8.3	9.8	11.3	12.8	14.3	15.8	17.3	18.8
2	20.3												

^{*} avec une hauteur d'occupation de 1.5 m.

Les valeurs qui sont obtenues à partir de la formule et de la table précédente doivent être réduites lorsque le panneau rayonnant est installé près d'un mur périmétrique. La réduction varie de 10% à 50% en fonction des caractéristiques du local (coefficient de transmission thermique des murs).

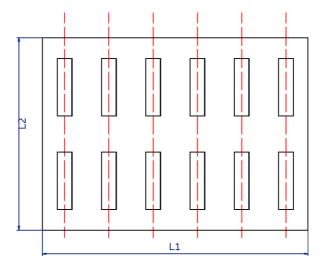
L'intervalle entre panneaux I_P est calculé ainsi:

$$I_P = \frac{L_1}{(N*+1)}$$
 [m]

où:

 I_P = intervalle entre panneaux

[m]


 N^* = nombre d'axes (rangées) longitudinaux de panneaux

 L_1 = longueur du mur perpendiculaire à l'axe des rangées de panneaux [m]

Le schéma 2.4 sert d'exemple. Le mur L1 et les 6 axes longitudinaux N^* de panneaux (en rouge).

Figure 2.4

Dès lors, il existe deux possibilités:

- La valeur de l'intervalle I_P est inférieure à celle de l'intervalle maximum I_{MAX} . Dans ce cas, les paramètres sont corrects et permettent l'implantation sans autres calculs;
- Par contre si l'intervalle I_P est supérieur à la valeur de l'intervalle I_{MAX}, il faut retourner au point 2.5 du calcul de dimensionnement et choisir un autre modèle de panneau moins puissant (soit avec moins de tubes de type AVL soit avec une largeur inférieure). Procéder par essais successifs I_P et poursuivre ensuite avec le calcul de dimensionnement.

2.7. CALCUL DE L'ABAISSEMENT DE TEMPERATURE REEL ET DE LA TEMPERATURE MOYENNE

Si l'abaissement de température pour un modèle donné ΔT_{table} (donné par les tables 1.5 et 1.7) est différent de l'abaissement de température obtenum ΔT_P , il faut calculer l'abaissement réel de

$$\Delta T = T_I - T_U = 2 (T_I - \Delta T_{table} - T_O)$$
 [°C]

où:

$$T_U$$
= Température réelle du fluide à la sortie du système [°C]

On peut aussi calculer la température moyenne réelle du fluide.

$$T_{M} = \Delta T_{table} + T_{O}$$
 [°C]

2.8. CALCUL DU DEBIT D'EAU ET DES PERTES DE CHARGE

Le débit total d'eau P requis est calculé selon la formule:

$$P = \frac{\Phi}{1,163 \cdot (\text{TI-TUE})}$$
 [L/h]

(Pour simplifier, on considère que la densité de l'eau est égale à 1 kg/dm³ et que sa chaleur spécifique est égale à 4.186 kJ/(kg K)

où:

$$\Phi$$
 = Puissance thermique nécessaire, calculée au point 2.1 [W] T_I = température d'alimentation du circuit [°C] T_U = Température réelle de sortie du fluide quittant le système [°C]

Le débit d'eau de chaque rangée P_L est:

où:

$$P_{L} = \frac{P}{N_{S}}$$
 [L/h]

N_S = Nombre de circuit composés d'une ou plusieurs rangées en série.

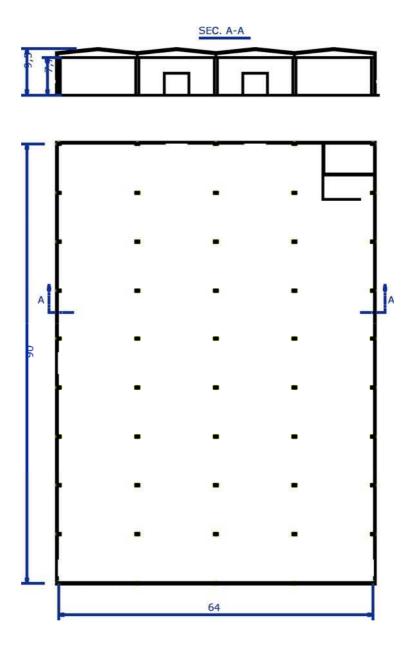
Le débit d'un seul tube est:

où:

 N_{TP} = nombre de tubes par panneau

La valeur doit être celle trouvée au paragraphe 1.4.

A partir des débits d'eau calculés pour les panneaux rayonnants, auxquels on ajoute ceux des collecteurs et les sections de réseau d'alimentation d'eau, et en utilisant les tables 1.24, 1.25, 1.26, 1.27, 1.28, on peut calculer les pertes en charge totales et choisir ainsi un circulateur adapté.


2.9. EXEMPLE DE DIMENSIONNEMENT

Considérons le dimensionnement de panneaux rayonnants pour un atelier de fabrication selon le schéma 2.5.

Dimensions du bâtiment:

Longueur: 90 m Largeur: 64 m Hauteur totale: 9.5 m

Figure 2.5

2.9.1. CALCUL DES BESOINS THERMIQUES

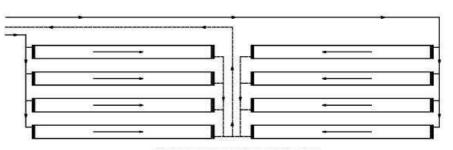
Il résulte du calcul de la puissance installée (chapitre 4.3) que pour une installation à 7.7 mètres de hauteur et une température résultante opérative: T_0 de 18°C, les besoins thermiques Φ s'élèvent à 876 KW.

2.9.2. DETERMINATION DE LA TEMPERATURE D'ALIMENTATION ET DE L'ABAISSEMENT DE TEMPERATURE DES PANNEAUX

Pour une température d'alimentation de T_I 84°C l'abaissement de température ΔT est de 12.5°C. La température de sortie de l'eau du système T_U and et la température d'eau moyenne T_{MP} peuvent être calculées.

$$\Delta T_{CP} = T_{I} - T_{UP} = 12,5^{\circ}C;$$

$$T_{UP} = T_{I} - \Delta T_{CP} = 84 - 12,5 = 71,5^{\circ}C;$$

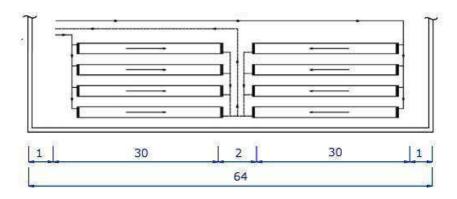

$$T_{MP} = \frac{(T_{I} + T_{UP})}{2} = 77,75^{\circ}C;$$

$$\Delta T_P = T_{MP} - T_O = 77,15 - 18 = 59,75 \, ^{\circ}C$$

2.9.3. CHOIX DU TYPE DE CIRCUIT

Choisir le type de circuit dans la figure 2.6, en utilisant des panneaux en parallèle. Grâce à ce type de circuit, il est possible d'utiliser des collecteurs standards.

Figure 2.6

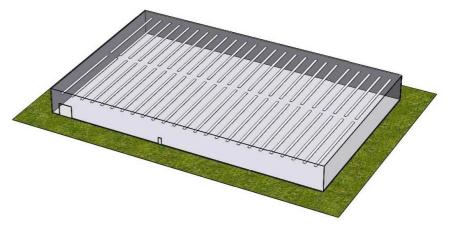

Entrées et sorties opposées - 1 panneau.

2.9.4. DETERMINATION DE LA LONGUEUR DES RANGEES

Chaque rangée de panneaux aura une longueur de 30 mètres (5 panneaux de 6 mètres unitaires). Veiller à laisser la place suffisante devant chaque panneau pour effectuer les opérations de montage.

Figure 2.7

2.9.5. CHOIX DU MODELE DE PANNEAU ET DETERMINATION DU NOMBRE DE RANGEES


Faire un essai avec un modèle EUTERM AVH 900. Utiliser la table 1.3 pour déterminer la puissance à installer en fonction du ΔT_P considéré :

$$\Delta T_P = 59.75$$
°C $R_T = 576$ W/m

Il est ainsi possible de calculer le nombre de rangées $N = \frac{\Phi}{L \cdot RT} = 50.69$

La figure 2.8 illustre l'implantation dans le bâtiment avec les rangées de panneaux.

Figure 2.8

On installe 50 lignes de panneaux de 30 m de long. La puissance installée par mètre sera de 584 W.

2.9.6. VERIFICATION DE L'INTERVALLE ENTRE CHAQUE RANGEE

L'intervalle maximum entre panneaux est:

$$I_{MAX} = 1.5 (H-h) = 1.5 (7.7 - 1.5) = 9.3 m$$

où:

H = 7.7 m (hauteur d'installation)

h = 1.5 m (hauteur de vie)

Calculer ensuite l'intervalle I_P:

$$IP = \frac{L1}{(N*+1)} = \frac{90}{(25+1)} = 3,46m$$

où:

 $N^* = 25$ (nombre de rangées)

 $L_1 = 90 \text{ m}$ (longueur du mur perpendiculaire aux rangées)

L'intervalle est dans ce cas inférieur au maximum, donc le dimensionnement est acceptable.

 $I_P < I_{MAX} = 3,46m < 9,3m$

2.9.7. CALCUL DE L'ABAISSEMENT DE TEMPERATURE ET DE LA TEMPERATURE MOYENNE

Pour un panneau donné, l'abaissement de température ΔT_{table} donné dans les tables 1.5 et 1.7 est égal à l'abaissement de température ΔT_P . Les températures calculées précédemment correspondent donc à la réalité. Dans le cas contraire (ΔT_P est très éloigné de ΔT_{table}) calculer l'abaissement de température à partir de la formule au point 2.7.

Calculer le ΔT effectif selon les tables 1.3 ou 1.5.

$$\Delta T_{P}$$
. = 59.75 °C

$$\Delta T_{table} = 61 \, ^{\circ}C$$

ΔT réel calculé à partir de la formule donnée au point 2.7

$$\Delta T_E = T_I - T_{UE} = 2 (T_I - \Delta T_{table} - T_O) = 10,0$$
°C

$$T_{UE} = T_I - \Delta T_E = 74$$
°C

Ainsi, lorsque $\Delta T_P.$ est le même que ΔT_{table} , on note que la température n'est pas très éloignée de la température de dimensionnement.

 $T_{UE} = 74$ °C / $T_{UP} = 71.5$ °C (voir point 2.9.2)

Exemple:

2.9.8. CALCUL DU DEBIT D'EAU ET DES PERTES EN CHARGE

Le débit total P requis s'établit ainsi:

$$P = \frac{\Phi}{1,163 \bullet (T_I - T_{UE})} = \frac{876000}{1,163 \bullet (84 - 74)} = 75322$$
 [L/h]

(Pour des raisons de simplification, on conviendra que la densité de l'eau est de 1 kg/dm^3 et sa chaleur spécifique de 4.186 kJ/(kg K)). où:

$$\begin{array}{ll} \Phi & = \text{puissance nécessaire} & [W] \\ T_I & = \text{température d'alimentation} & [^{\circ}C] \\ T_{UE} & = \text{température réelle de sortie du fluide} & [^{\circ}C] \end{array}$$

Le débit d'eau de chaque rangée P_L est:

$$P_L = \frac{P}{Ns} = \frac{75322}{50} = 1506$$
 [L/h]

 N_S = nombre de circuits comportant une ou plusieurs rangées.

Le débit pour chaque tube est:

où:

PTUBE =
$$\frac{P_L}{N_{TP}} = \frac{1506}{9} = 167,4$$
 [L/h]

 N_{TP} = nombre de tubes par panneau

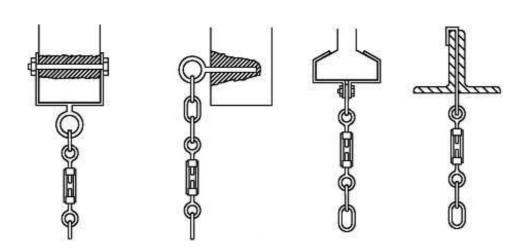
A partir du débit unitaire de chaque panneau, de chacun de ses collecteurs (en utilisant les diagrammes 1.24, 1.25, 1.26, 1.27, 1.28), puis en tenant compte des diamètres de tubes pour l'alimentation de l'installation, on peut calculer les pertes de charge totales et déterminer ainsi le circulateur adéquat.

Panneau rayonnant avec 9 tubes, débit d'eau au collecteur 1506 [l/h] Perte de charge/mètre = 0.03 kPa = 0.3 mbar = 3 mm c.e. (fig. 1.24) pour 30 m de panneaux = 0.9 kPa = 9 mbar = ab.90 mm Perte de charge par couple de collecteurs (standards) = 1.5 kPa = 15 mbar = ab. 150 mm (fig. 1.28)

Perte de charge totale = 2.4 kPa = 24 mbar = ab. 240 mm (2 collecteurs +30 m de panneaux)

3. INSTALLATION

La fourniture de panneaux EUTERM comprend les panneaux complets avec ses collecteurs (à sertir sur place), l'isolant avec ses fixations. L'installation d'un système EUTERM est simple et rapide. Il faut prend garde au on alignement des panneaux qui doit être réalisé en hauteur.


ATTENTION:

Avant d'installer le système, il est nécessaire de retirer le film de protection sur la surface du panneau rayonnant !

3.1. SYSTEMES D'ACCROCHAGE

Les panneaux rayonnants EUTERM sont équipés de cornières percées qui permettent un accrochage aux structures. L'accrochage qui peut être réalisé par chaînes, câbles ou tiges sur les structures du bâtiment doit-dans tous les cas-être robuste et flexible, pour tenir compte de la dilatation des matériaux sous l'effet de la chaleur. Tous les points d'accrochage doivent comporter des possibilités d'ajustement de longueur (normalisés) pour le réglage de la suspension.

Figure 3.1 Type d'accroches selon la structure du bâtiment

3.1.1. ECARTEMENTS DES SUSPENSIONS SUR LA LARGEUR DU PANNEAU

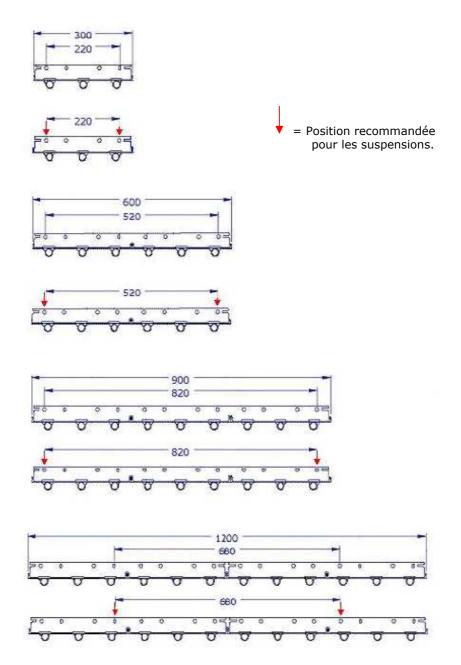
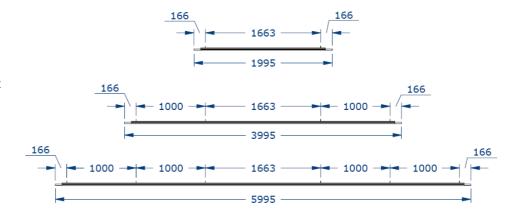

Les tableaux 3.1 et 3.2 donnent les écartements recommandés entre chaque point d'accrochage pour chaque modèle de panneau EUTERM.

Tableau 3.1 Distance recommandée [mm] entre suspensions en fonction du modèle de panneau

Largeur du panneau [mm]	300	600	900	1200
Distance recommandée entre suspensions [mm]	220	520	820	680

Figure 3.2

Distance recommandée [mm] d'entre-axe de suspension sur la largeur du panneau rayonnant



3.1.2. ENTRE-AXE DES SUSPENSIONS SUR LA LONGUEUR DU PANNEAU

Le schéma 3.3 détaille le positionnement des cornières selon la longueur des panneaux. Les cornières sont percées de trous de 10 mm de diamètre qui servent à fixer les suspensions. Les suspensions doivent toujours être fixées à proximité des collecteurs Les suspensions intermédiaires ne doivent pas être éloignées de plus de 2 mètres. Seulement dans le cas de panneaux sertis entre eux, il est possible de prévoir un intervalle de 2,35 m entre chaque suspension.

Figure 3.3 Entre-axe des suspensions sur la longueur des panneaux

3.1.3. NOMBRE DE SUSPENSIONS

Il est conseillé de réaliser l'accrochage comme le montre le schéma 3.4; Il est possible de s'accrocher sur un seul point comme le montre le schéma 3.5. mais dans ce cas il faut assurer une suspension très robuste et tenir compte de l'effet de balancier possible. Dans ce cas l'angle formé par les suspensions sur le panneau (angle α , Figure 3.5) doit être supérieur à 60°.

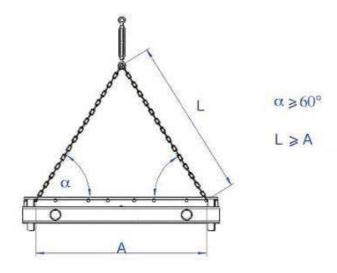
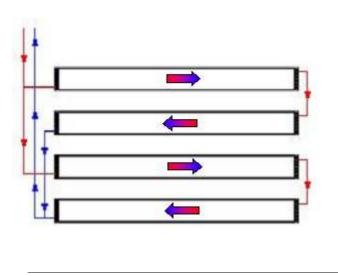

Figure 3.4Installation des panneaux rayonnants avec deux accroches

Figure 3.6

3.1.4. LONGUEUR DES SUSPENTES

Les panneaux rayonnants, en fonction de la température de fonctionnement et de leur longueur, sont sujets à la dilatation qui doit pouvoir être absorbée par les suspensions. Le tableau suivant donne la longueur minimum des suspentes en fonction de la température moyenne du fluide.


Table 3.2 Longueurs minimales des suspensions [cm] en fonction de la température du fluide

Longueur du panneau[m]	Température moyenne du fluide[°C]						
	45	60	80	100	120	140	
	Lon	gueur	mini.	des su	spentes	s[cm]	
18	15	18	22	28	34	41	
24	17	21	26	33	40	48	
30	20	25	31	39	47	56	
36	24	30	37	46	55	65	
42	29	36	44	54	64	75	

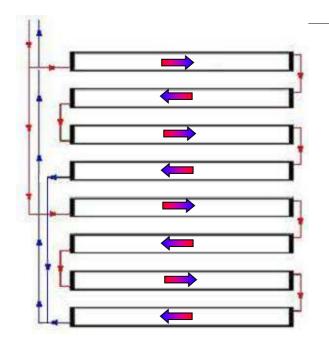
3.2. TYPES DE CIRCUITS ET TYPES DE COLLECTEURS

Figure 3.6Exemple de circuits avec collecteurs simples standard

Entrée et sortie du même côté

2 panneaux raccordés en série

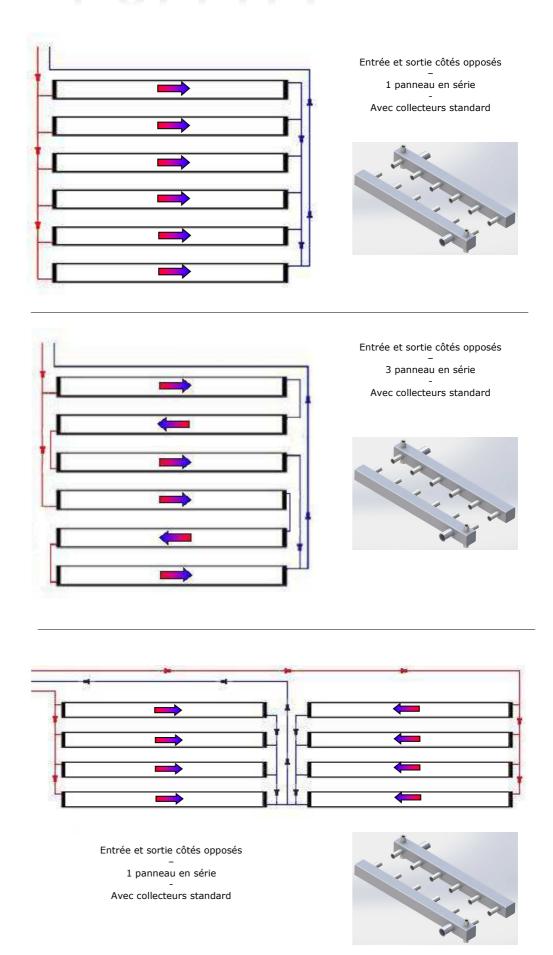
Avec des collecteurs standard



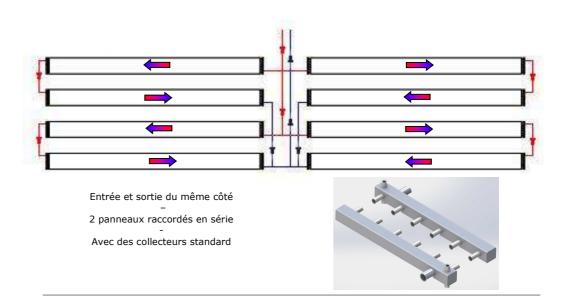
Entrée et sortie du même côté

4 panneaux en série

Avec des collecteurs standard


Entrée et sortie du même côté

4 panneaux en série


Avec des collecteurs standard

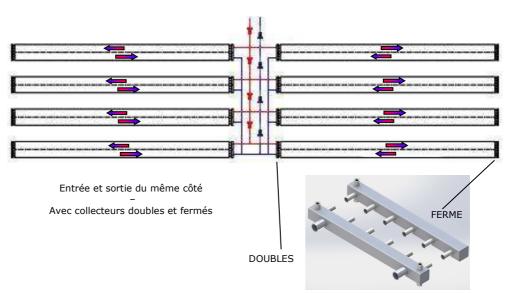


Figure 3.7Exemple de circuits avec collecteurs doubles et collecteurs fermés

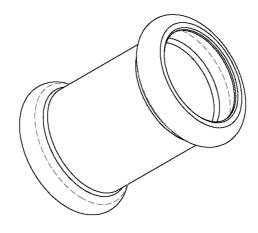
Pour choisir votre configuration hydraulique, il est nécessaire de faire attention aux points suivants :

- Le circuit hydraulique doit être équilibré de la meilleure façon (prévoir des vannes d'équilibrage).
- Prendre en compte le réseau d'alimentation hydraulique pour la disposition des panneaux rayonnants (le coût du réseau d'alimentation peut être supérieur à celui des panneaux).
- Pour des raisons de différence de temperature transversales, utiliser les collecteurs doubles seulement lorsque cela s'avère nécessaire (départ / retour du même côté)

3.3. Raccordement des collecteurs

Le raccordement des collecteurs aux tubes des panneaux rayonnants doit impérativement être réalisé avec des raccords à sertir \varnothing 21,3 mm en acier galvanisé carbone, de marque FRABO, équipé de joints toriques EPDM, fournis par Exeltec.

Le raccordement des collecteurs avec des raccords non fournis par Exeltec exclut toute garantie.

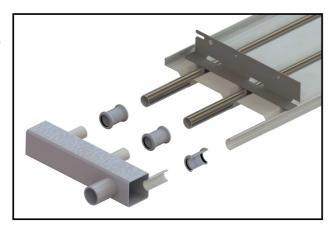

Si le système fonctionne avec de l'eau surchauffée, les raccords à sertir doivent être équipés de joints toriques spéciaux, avec une compatibilité garantie par l'entreprise qui les fournit.

Si l'insertion des tubes dans les raccords est difficile à cause des tolerances d'enboitement, il est possible d'utiliser un liquide lubrifiant comme de l'eau ou de l'eau savonneuse.

N'utilisez jamais des HUILES, DES GRAISSES, DES VAPORISATEURS EN SILICONE ou un autre LUBRIFIANT à cette fin!!!

Figure 3.8

Exemple de raccord utilisé



Nous fournissons des raccords à sertir de marque FRABO, voir mâchoires/pinces compatibles ci-dessous.

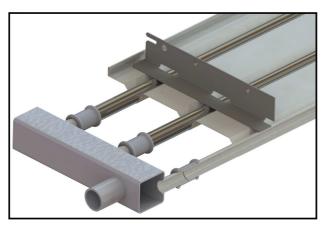

MARQUE	MACHOIRE
NOVOPRESS - FRABO	Fb12 ÷ Fb35
ROTHEMBERGER	SV12 ÷ SV54
VIEGA	VIEGA 12 ÷ VIEGA 54
RIDGID	V12 ÷ V54
KLAUKE	KSP4 12 ÷ KSP4 54
REMS	V12 ÷ V54
VIRAX (32kN)	V12 ÷ V54

Figure 3.9Connexion entre le collecteur et les tubes avec les raccords à sertir.

Figure 3.9bInsertion du collecteur

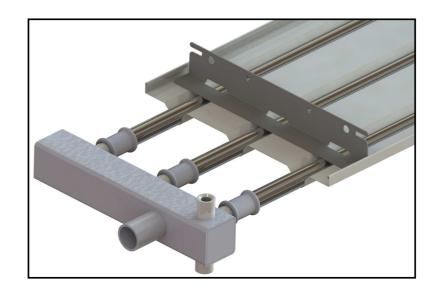
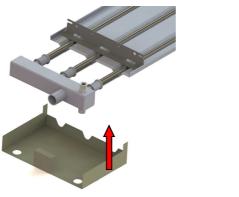

Faites la connection entre les tubes du collecteur et les tubes du panneau rayonnant avec les raccords à sertir, en veillant à bien les enboiter jusqu'à la butée.

Figure 3.9c Sertissage du raccord avec l'outil approprié


Figure 3.9d Exemple de collecteur Raccordé au panneau rayonnant

3.4. Installation des couvre-collecteurs (accessoire en option, nous consulter)

Figure 3.10

Appliquez le couvre- collecteur comme indiqué dans l'image ci-dessous.

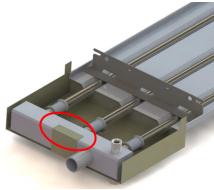
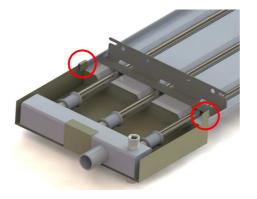
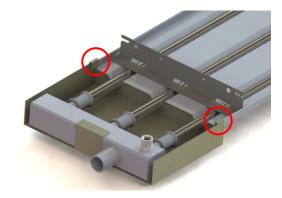




Figure 3.10a

Fixez le couvre- collecteur au panneau en pliant les aillettes prévues à cette effet

3.5. Suspension des panneaux rayonnants

Pour l'installation des panneaux rayonnants, il est conseillé de légèrement incliner le panneau rayonnant afin d'obtenir une vidange et une purge de l'air optimale, comme indiqué sur les figures 3.x11 et 3.12.

Il est important que le point d'entrée du fluide (fluide chaud) et que le purgeur soit situé à la position la plus haute du système. Il en est de même pour la vidange qui doit être situé au point le plus bas.

Figure 3.11

Incliner légèrement le panneau dans le sens de la longueur.

Purgeur d'air

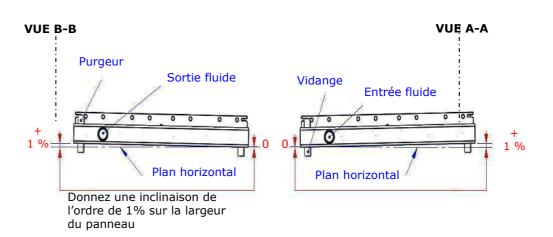
1 - 3 % of L

Sortie raccordement

VUE B-B

Figure 3.11

Furgeur d'air

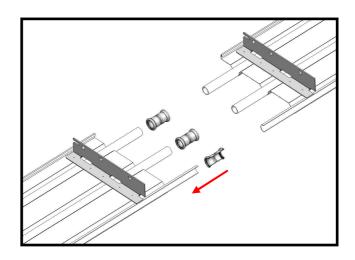

Vidange

Vidange

VUE A-A

Installer le panneau avec une pente de 1 à 3 % dans le sens de la longueur afin de garantir le bon fonctionnement de la purge et de la vidange.

Figure 3.12 Incliner légèrement le panneau dans le sens de la largeur



3.6. CONNEXIONS ENTRE PANNEAUX

La connexion des tubes entre les panneaux radiants est réalisée au moyen de raccords à sertir galvanisés. Il faut utiliser des pinces à sertir avec une mâchoire de 22 mm et des joints toriques en EPDM (conçus pour les systèmes à eau chaude), pour lesquels les fournisseurs apportent tout garantie d'étanchéité dans le temps.

Nota - Compatibilité des mâchoires avec nos raccords à sertir page 58.

Figure 3.13
Inserer les tubes dans les raccords jusqu'à la butée.

Figure 3.13aMontez le raccord avec la pince à sertir et la machoire adaptées.

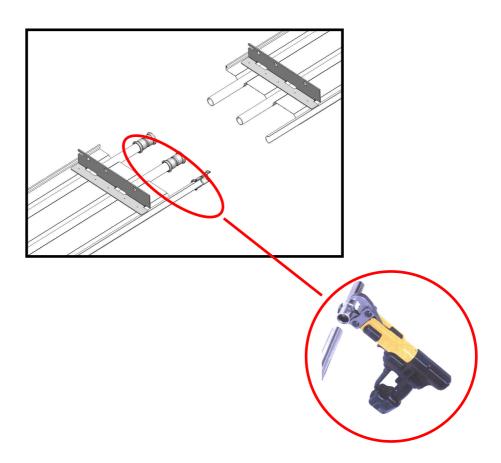
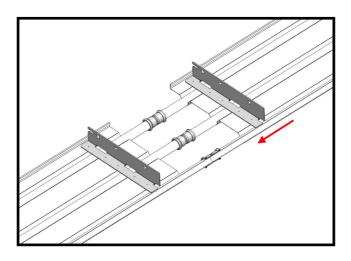
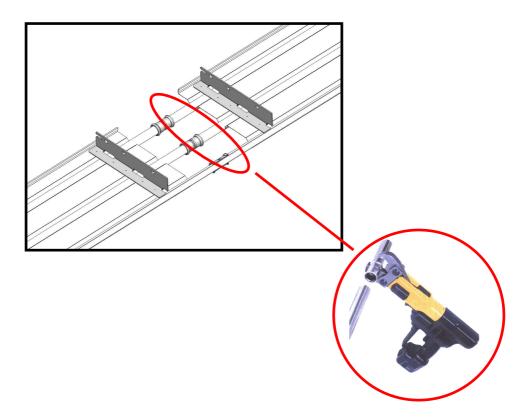
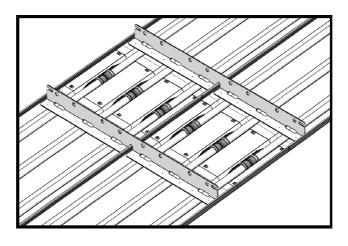
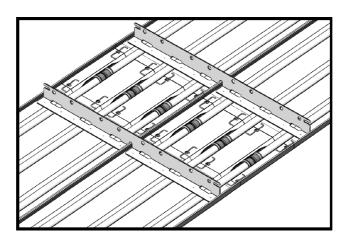




Figure 3.13b Inserer les tubes du panneau suivant dans les raccords jusqu'à la butée

Figure 3.13cMontez la pince à sertir
Et la machoire adaptée




3.7. ASSEMBLAGE DU JOINT DE JONCTION

Présenter le couvre joint entre chaque panneau et le fixer au moyen des clips.

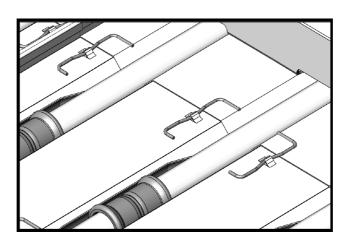
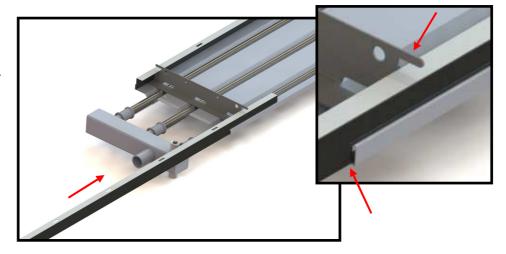

Figure 3.14Mise en place des couvre joints

Figure 3.15 Fixation des couvre joints

Figure 3.16Détail de fixation



3.8. Installation de l'isolant sur les panneaux standards

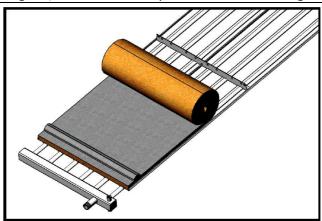
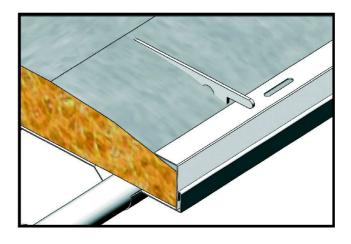
Insérer les profils latéraux destinés au maintien de la laine de verre en partant de l'extrémité du panneau.

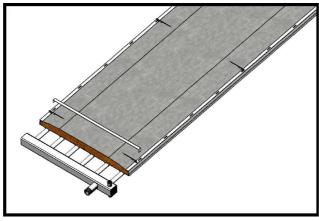
Figure 3.17
Positionnement des profils latéraux destinés au maintien de la laine de verre.

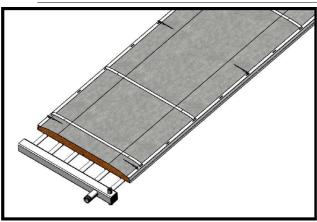
Après avoir inséré les profils latéraux, posez l'isolation avec la feuille d'aluminium sur le côté supérieur, découper délicatement la laine au niveau des points de fixation. Insérez l'isolant sous les profils latéraux

Attention : Les bandes de laine de verre que nous fournissons ont une largeur de 300, 600 ou 900 mm. Pour les panneaux rayonnants de 1200 mm de largeur, utiliser deux tapis isolants d'une largeur de 600 mm.

Figure 3.18
Mise en place de l'isolant
avec la feuille d'aluminium
sur le côté supérieur


Figure 3.19
Positionnement de l'isolant après la découpe près des points de suspension et après l'insertion de l'isolant sous les profils latéraux.



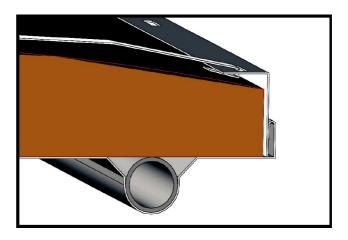
Finir l'installation en accrochant les barres de maintien (une par mètre)

Figure 3.20Insertion des barres de maintien de l'isolant

Figure 3.21Quantité et positionnement des barres de maintien de l'isolant

Panneau rayonnant - longueur 2 m Panneau rayonnant - longueur 4 m Panneau rayonnant - longueur 6 m : :

5 barres de maintien d'isolant sont

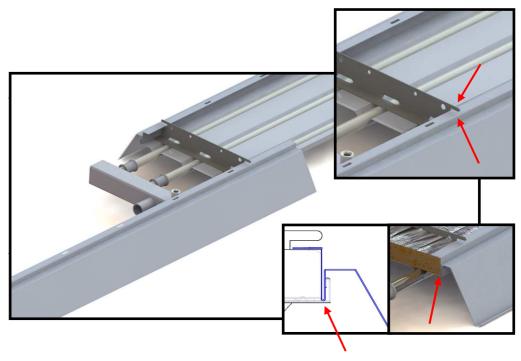

3 barres de maintien d'isolant sont nécessaires;

nécessaires;

7 barres de maintien d'isolant sont nécessaires;

1 au début du panneau rayonnant 1 au milieu du panneau rayonnant 1 à la fin du panneau rayonnant 1 au début du panneau rayonnant 3 au milieu, (1 tous les 1 mètre). 1 à la fin du panneau rayonnant 1 au début du panneau rayonnant 5 au milieu, (1 tous les 1 mètre). 1 à la fin du panneau rayonnant

Figure 3.22Détail de la fixation pour la barre de maintien



3.9 INSTALLATION DE L'ISOLANT SUR LES PANNEAUX AVEC DEFLECTEURS LATERAUX ANTI CONVECTION

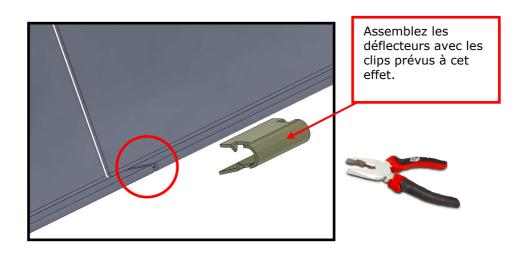

Insérez les deflecteurs latéraux destinés au maintien de la laine de verre en partant de l'extrémité d'un panneau.

Figure 3.23 Insertion du déflecteur latéral

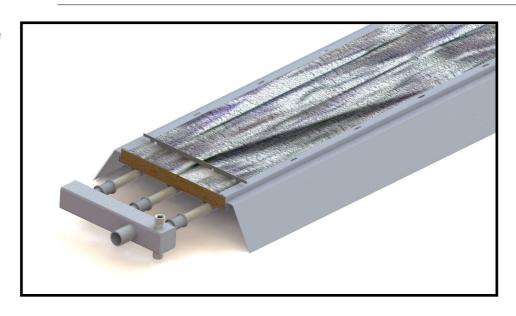

L'insertion du déflecteur doit se faire comme sur les images ci-dessus.

Figure 3.24Assemblage des déflecteurs latéraux anti convection

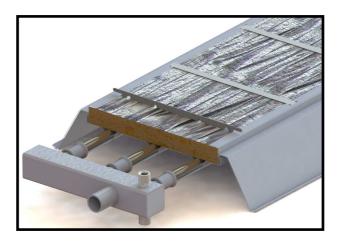
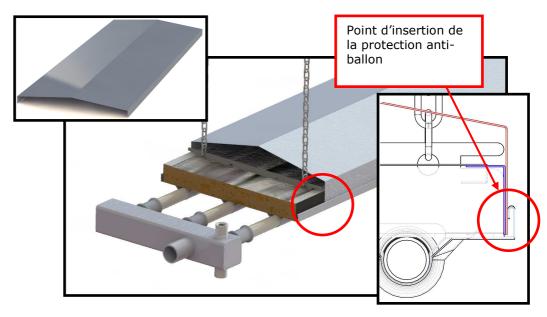
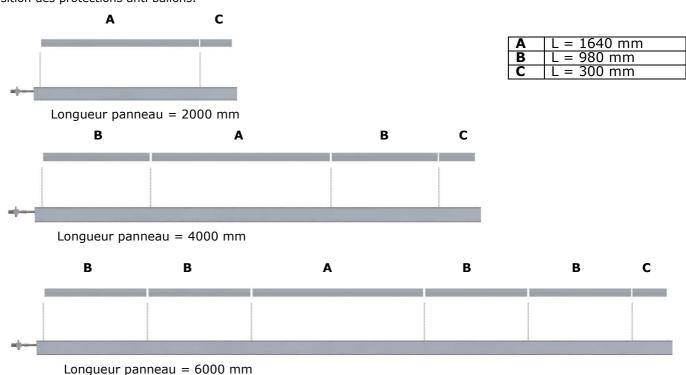


Figura 3.25Mise en place l'isolant avec la feuille d'aluminium sur le côté supérieur.

Figure 3.26 Fixer l'isolant avec les barres de maintien.


3.10 Installation des protections anti-ballon (option) sur les panneaux standard.

Après avoir installé l'isolant et les profilés latéraux, insérer les protections anti-ballons :


Attention : Lorsque vous utilisez les protections anti-ballons, les barres de maintien de l'isolant ne sont plus nécessaires.

Ces protections sont installées sur les panneaux rayonnants afin d'éviter l'accumulation de la poussière et le bloquage des ballons sur les panneaux. Les protections sont particulièrement utiles pour les installations dans des gymnases ou dans les environnements poussérieux. Il existe deux types de protection, une pour les panneaux de 300, 600 et 900 mm de largeur et une autre pour les panneaux de 1200 mm de largeur.

Figure 3.27 Protection pour les panneaux 300, 600 et 900 mm de large

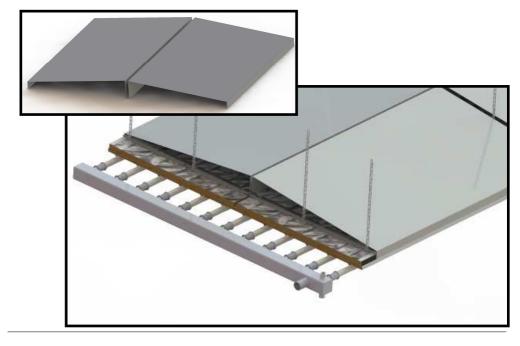
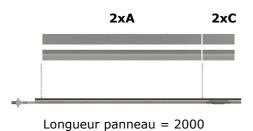
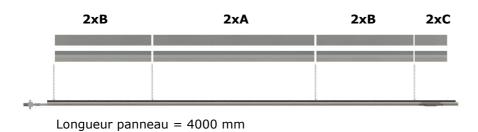


Figure 3.28Position des protections anti ballons.




Figure 3.29 Protection anti ballons pour panneaux 1200 mm de largeur.

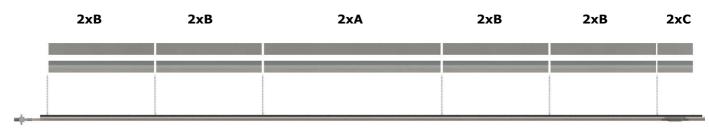
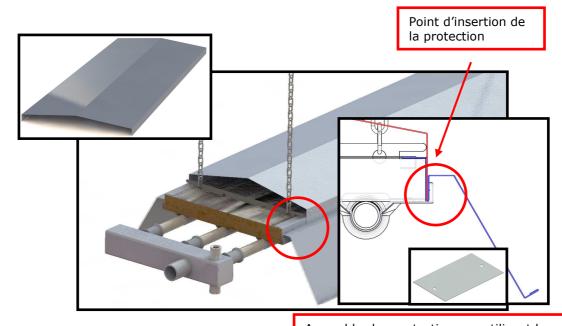


Figure 3.30 Positionnement des protections anti-ballons

Α	L = 1640 mm
В	L = 980 mm
С	L = 300 mm

Longueur panneau = 6000 mm

3.11. Installation des protections anti-ballons sur panneaux avec déflecteurs anti-convection.


Après l'installation de l'isolant et des profilés latéraux, insérer les protections anti-ballons.

Attention : Lorsque vous utilisez les protections anti-ballons, les barres de maintien de l'isolant ne sont plus nécessaires.

Ces protections sont installées sur les panneaux rayonnants afin d'éviter l'accumulation de la poussière et le bloquage des ballons sur les panneaux. Les protections sont particulièrement utiles pour les installations dans des gymnases ou dans les environnements poussérieux.

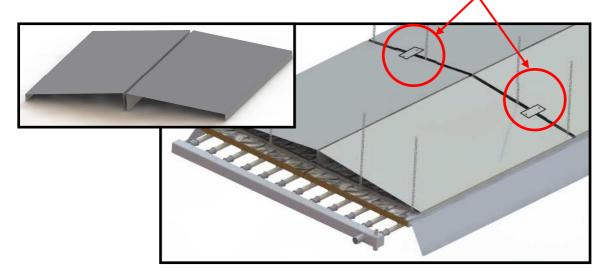

Il existe deux types de protection, une pour les panneaux de 300, 600 et 900 mm de largeur et une autre pour les panneaux de 1200 mm de largeur.

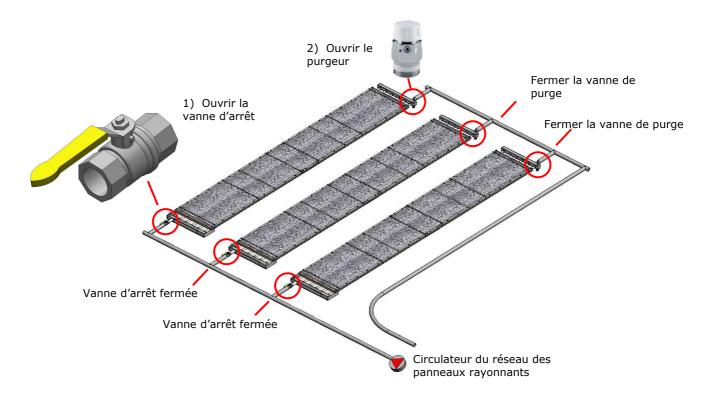
Figure 3.31Protections pour panneaux
300,600 et 900 mm avec déflecteurs anti-convection

Figure 3.32 Protection pour panneau 1200mm

Assembler les protections en utilisant les plaques spéciales fournies et des vis autoforeuses \emptyset 3,9 mm ou des rivets \emptyset 4 mm (visserie non fournie)

3.12. Mise en eau et vidange du système

Une fois l'installation du système terminé et les vannes de vidange des collecteurs fermées, vous pouver procéder à la mise en eau des panneaux.

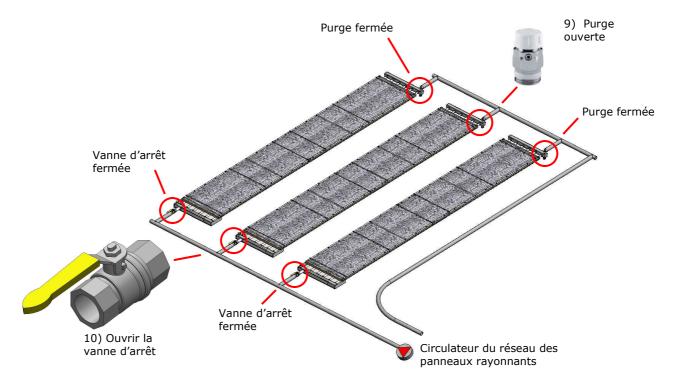

Pression de service maximale = 6 bars

ATTENTION!!

Pour un bon fonctionnement, le réseau ne doit pas contenir d'air.

3.12.1. Instructions pour la mise en eau et la vidange du système.

- 1) Ouvrir la vanne sur le départ de l'installation alimentant les panneaux rayonnants (vanne la plus éloignée du circulateur)
- 2) Ouvrir les purgeurs d'air sur les collecteurs.
- 3) Mettre en route la pompe hydraulique pour mettre en eau et chasser l'air du panneau rayonnant.
- 4) Attendre que la totalité de l'air soit chassée du panneau rayonnant.
- 5) Quand le purgeur évacue seulement de l'eau, on peut considérer le panneau a été correctement purgé.



- 6) Après avoir effectué la mise en eau et purgé le premier panneau rayonnant, fermer les purgeurs d'air.
- 7) Après avoir mis en eau le premier panneau, fermer sa vanne d'arrêt

(alimentation)

- 8) Passer au panneau précédent
- 9) Ouvrir le purgeur
- 10) Ouvrir la vanne du panneau pour la mise en eau et la purge de l'air

- 11) Répeter les points 6,7,8,9 et 10 jusqu'à atteindre le panneau le plus proche de la pompe.
- 12) Quand l'ensemble des panneaux sont considérés comme mis en eau et correctement purgés, ouvrir l'ensemble des vannes, l'installation est prête à fonctionner.

Le système est prêt à fonctionner.

4. DESCRIPTIFS TECHNIQUES

Descriptif des panneaux STX:

- Panneaux rayonnants en acier galvanisé pré-laqué épaisseur 0,6mm en largeur de 300, 600, 900 et 1200 mm et pour des longueurs de 2000, 4000 et 6000 mm. Design spécifique à profil semi-circulaire pour l'encastrement des tubes à fluide caloporteur par embouti sans soudure. Optimise la surface d'échange grâce à une surface de contact plus importante entre le tube et le panneau Entre-axes 100 mm et 200 mm, selon les modèles. Emissivité de la surface d'échange ε = 0,95.
- Tubes en acier galvanisé épaisseur 1,5 mm, diamètre extérieur 21,3 mm directement encastrés dans les parties semi circulaires des panneaux rayonnant. (75% de la surface des tubes au contact du panneau). Tubes électrosoudés profilés à froid, pression de service maximale = 6 bars; température de service maximale 120°C.
- Support cornière en acier galvanisé laqué conçu et dessiné pour faciliter la suspension du panneau à la structure du bâtiment.
- Les collecteurs en acier galvanisé laqué sont conçus sur la base d'un tube de section 50 x 50 mm. Raccordement hydraulique 1 pouce côté alimentation en eau (1 pouce ¼ sur demande). De l'autre côté, le collecteur est composé de tubes diamètre extérieur 21,3 mm spécialement adaptés pour un raccordement aux tubes des panneaux avec des raccords à sertir. Il y a aussi un emplacement pour l'installation d'un purgeur (partie haute) et d'une vidange (partie basse).
- Isolant laine de verre isolant avec papier aluminium M0 sur un côté, épaisseur de 40 et 50 mm, avec largeur 300, 600, 900 mm. Caractéristiques thermiques selon la norme DIN 52612.
- Profils latéraux en acier galvanisé laqué pour le maintien de l'isolant (longueur 2050 mm) placés sur les côtés du panneau.
- Déflecteurs latéraux anti-convection en acier galvanisé laqué pour une meilleure émissivité vers le bas et pour réduite les mouvements convectifs vers le plafond. (Option)
- Protections anti-ballon en acier galvanisé laqué pour éviter le blocage des ballons et l'accumulation de la poussière sur le panneau. (Option)
- Barres de maintien pour l'isolant en acier galvanis laqué (une par mètre)
- Optimisateurs de rayonnement en acier galvanisé pré-laqué pour cacher les connexions panneau-panneau et optimiser le rayonnement du système.

EXELTEC

Parc d'Orcha
7 rue des Maraîchers
69 120 VAULX EN VELIN
Tel. 04 78 82 01 01
Fax 04 78 82 01 02
info@exeltec.fr
www.adventair.fr
www.exeltec.fr

